319
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Molecular interactions of trichoderma β-1,4-glucosidase (ThBglT12) with mycelial cell wall components of phytopathogenic Macrophomina phaseolina

, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2831-2847 | Received 06 Nov 2021, Accepted 02 Feb 2022, Published online: 17 Feb 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Arroyo, J., Farkaš, V., Sanz, A. B., & Cabib, E. (2016). Strengthening the fungal cell wall through chitin–glucan cross‐links: Effects on morphogenesis and cell integrity. Cellular Microbiology, 18(9), 1239–1250.
  • Badieyan, S., Bevan, D. R., & Zhang, C. (2012). Probing the active site chemistry of β-glucosidases along the hydrolysis reaction pathway. Biochemistry, 51(44), 8907–8918.
  • Bahaman, A. H., Abdul Wahab, R., Hamid, A. A. A., Halim, K. B. A., Kaya, Y., & Edbeib, M. F. (2020). Substrate docking and molecular dynamic simulation for prediction of fungal enzymes from Trichoderma species-assisted extraction of nanocellulose from oil palm leaves. Journal of Biomolecular Structure & Dynamics, 38(14), 4246–4258.
  • Beigoli, S., Sharifi Rad, A., Askari, A., Assaran Darban, R., & Chamani, J. (2019). Isothermal titration calorimetry and stopped flow circular dichroism investigations of the interaction between lomefloxacin and human serum albumin in the presence of amino acids. Journal of Biomolecular Structure & Dynamics, 37(9), 2265–2282.
  • Bernard, M., & Latgé, J.-P. (2001). Aspergillus fumigatus cell wall: Composition and biosynthesis. Medical Mycology, 39(1), 9–17. https://doi.org/10.1080/mmy.39.1.9.17
  • Cairns, J. R. K., & Esen, A. (2010). β-Glucosidases. Cellular and Molecular Life Sciences: CMLS, 67(20), 3389–3405.
  • Chamani, J. (2010). Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. Journal of Molecular Structure, 979(1–3), 227–234. https://doi.org/10.1016/j.molstruc.2010.06.035
  • Chamani, J., & Moosavi-Movahedi, A. (2006). Effect of n-alkyl trimethylammonium bromides on folding and stability of alkaline and acid-denatured cytochrome c: A spectroscopic approach. Journal of Colloid and Interface Science, 297(2), 561–569.
  • Chamani, J., Moosavi-Movahedi, A., & Hakimelahi, G. (2005). Structural changes in β-lactoglobulin by conjugation with three different kinds of carboxymethyl cyclodextrins. Thermochimica Acta, 432(1), 106–111. https://doi.org/10.1016/j.tca.2005.04.014
  • Chamani, J., Moosavi-Movahedi, A., Saboury, A., Gharanfoli, M., & Hakimelahi, G. (2003). Calorimetric indication of the molten globule-like state of cytochrome c induced by n-alkyl sulfates at low concentrations. The Journal of Chemical Thermodynamics, 35(2), 199–207. https://doi.org/10.1016/S0021-9614(02)00312-9
  • Chaudhuri, A., Haldar, S., Sun, H., Koeppe, I. I., R. E., & Chattopadhyay, A. (2014). Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels. Biochimica et Biophysica Acta, 1838(1 Pt B), 419–428. https://doi.org/10.1016/j.bbamem.2013.10.011
  • Cota, J., Corrêa, T. L., Damasio, A. R., Diogo, J. A., Hoffmam, Z. B., Garcia, W., Oliveira, L. C., Prade, R. A., & Squina, F. M. (2015). Comparative analysis of three hyperthermophilic GH1 and GH3 family members with industrial potential. New Biotechnology, 32(1), 13–20.
  • Dareini, M., Tehranizadeh, Z. A., Marjani, N., Taheri, R., Aslani-Firoozabadi, S., Talebi, A., Eidgahi, N. N., Saberi, M. R., & Chamani, J. (2020). A novel view of the separate and simultaneous binding effects of docetaxel and anastrozole with calf thymus DNA: Experimental and in silico approaches. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 228, 117528. https://doi.org/10.1016/j.saa.2019.117528
  • Davies, G., & Henrissat, B. (1995). Structures and mechanisms of glycosyl hydrolases. Structure (London, England: 1993), 3(9), 853–859. [Database] https://doi.org/10.1016/S0969-2126(01)00220-9
  • de Giuseppe, P. O., Souza, TdA., Souza, F. H. M., Zanphorlin, L. M., Machado, C. B., Ward, R. J., Jorge, J. A., Furriel, RdPM., & Murakami, M. T. (2014). Structural basis for glucose tolerance in GH1 β-glucosidases. Acta Crystallographica Section D Biological Crystallography, 70(6), 1631–1639. https://doi.org/10.1107/S1399004714006920
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on Protein Crystallography, 40, 82–92.
  • Diourte, M., Starr, J., Jeger, M., Stack, J., & Rosenow, D. (1995). Charcoal rot (Macrophomina phaseolina) resistance and the effects of water stress on disease development in sorghum. Plant Pathology, 44(1), 196–202. https://doi.org/10.1111/j.1365-3059.1995.tb02729.x
  • Dutta, P. K., Dutta, J., & Tripathi, V. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific & Industrial Research, 63, 20-31.
  • Edbeib, M. F., Wahab, R. A., Kaya, Y., & Huyop, F. (2017). In silico characterization of a novel dehalogenase (DehHX) from the halophile Pseudomonas halophila HX isolated from Tuz Gölü Lake, Turkey: Insights into a hypersaline-adapted dehalogenase. Annals of Microbiology, 67(5), 371–382. https://doi.org/10.1007/s13213-017-1266-2
  • Flannelly, D. F., Aoki, T. G., & Aristilde, L. (2015). Short-time dynamics of pH-dependent conformation and substrate binding in the active site of beta-glucosidases: A computational study. Journal of Structural Biology, 191(3), 352–364.
  • Florindo, R. N., Souza, V. P., Mutti, H. S., Camilo, C., Manzine, L. R., Marana, S. R., Polikarpov, I., & Nascimento, A. S. (2018). Structural insights into β-glucosidase transglycosylation based on biochemical, structural and computational analysis of two GH1 enzymes from Trichoderma harzianum. New Biotechnology, 40(Pt B), 218–227. https://doi.org/10.1016/j.nbt.2017.08.012
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Petersson, G., & Nakatsuji, H. (2016). Gaussian 16 revision a. 03. 2016; gaussian inc. Wallingford CT, 2.
  • Frutuoso, M., & Marana, S. (2013). A single amino acid residue determines the ratio of hydrolysis to transglycosylation catalyzed by β-glucosidases. Protein and Peptide Letters, 20(1), 102–106.
  • Howell, C. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87(1), 4–10. https://doi.org/10.1094/PDIS.2003.87.1.4
  • Huang, S.-Y., & Zou, X. (2010). Inclusion of solvation and entropy in the knowledge-based scoring function for protein − Ligand interactions. Journal of Chemical Information and Modeling, 50(2), 262–273.
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38.
  • Jeng, W.-Y., Wang, N.-C., Lin, M.-H., Lin, C.-T., Liaw, Y.-C., Chang, W.-J., Liu, C.-I., Liang, P.-H., & Wang, A. H.-J. (2011). Structural and functional analysis of three β-glucosidases from bacterium Clostridium cellulovorans, fungus Trichoderma reesei and termite Neotermes koshunensis. Journal of Structural Biology, 173(1), 46–56.
  • Johnson, K. A. (2008). Role of induced fit in enzyme specificity: A molecular forward/reverse switch. The Journal of Biological Chemistry, 283(39), 26297–26301. https://doi.org/10.1074/jbc.R800034200
  • Khalili, E., Huyop, F., Javed, M. A., Mahat, N. A., Batumalaie, K., & Wahab, R. A. (2018). Assessments on the catalytic and kinetic properties of Beta-glucosidase isolated from a highly efficient antagonistic fungus Trichoderma harzianum. Bioscience Journal, 34(4), 830–847.
  • Khalili, E., Huyop, F., Myra Abd Manan, F., & Wahab, R. A. (2017). Optimization of cultivation conditions in banana wastes for production of extracellular β-glucosidase by Trichoderma harzianum Rifai efficient for in vitro inhibition of Macrophomina phaseolina. Biotechnology & Biotechnological Equipment, 31(5), 921–934. https://doi.org/10.1080/13102818.2017.1342562
  • Khalili, E., Javed, M., Huyop, F., & Wahab, R. (2019). Efficacy and cost study of green fungicide formulated from crude beta-glucosidase. International Journal of Environmental Science and Technology, 16(8), 4503–4518. https://doi.org/10.1007/s13762-018-2084-1
  • Khalili, E., Javed, M. A., Huyop, F., Rayatpanah, S., Jamshidi, S., & Wahab, R. A. (2016). Evaluation of Trichoderma isolates as potential biological control agent against soybean charcoal rot disease caused by Macrophomina phaseolina. Biotechnology & Biotechnological Equipment, 30(3), 479–488. https://doi.org/10.1080/13102818.2016.1147334
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., & Lynn, A. (2014). g_mmpbsa–A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. ACS Publications.
  • Latgé, J. P. (2010). Tasting the fungal cell wall. Cellular Microbiology, 12(7), 863–872. https://doi.org/10.1111/j.1462-5822.2010.01474.x
  • Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
  • Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., & Mark, A. E. (2011). An automated force field topology builder (ATB) and repository: Version 1.0. Journal of Chemical Theory and Computation, 7(12), 4026–4037.
  • McIntosh, L. P., Hand, G., Johnson, P. E., Joshi, M. D., Körner, M., Plesniak, L. A., Ziser, L., Wakarchuk, W. W., & Withers, S. G. (1996). The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: A 13C-NMR study of bacillus circulans xylanase. Biochemistry, 35(31), 9958–9966. https://doi.org/10.1021/bi9613234
  • Mokaberi, P., Babayan-Mashhadi, F., Amiri Tehrani Zadeh, Z., Saberi, M. R., & Chamani, J. (2021). Analysis of the interaction behavior between Nano-Curcumin and two human serum proteins: Combining spectroscopy and molecular stimulation to understand protein-protein interaction. Journal of Biomolecular Structure & Dynamics, 39(9), 3358–3377.
  • Monteiro, V. N., do Nascimento Silva, R., Steindorff, A. S., Costa, F. T., Noronha, E. F., Ricart, C. A. O., de Sousa, M. V., Vainstein, M. H., & Ulhoa, C. J. (2010). New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Current Microbiology, 61(4), 298–305.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.
  • Nakamura, A., Tsukada, T., Auer, S., Furuta, T., Wada, M., Koivula, A., Igarashi, K., & Samejima, M. (2013). The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important for initiation of degradation of crystalline cellulose. Journal of Biological Chemistry, 288(19), 13503–13510. https://doi.org/10.1074/jbc.M113.452623
  • Nguyen, N. T., Nguyen, T. H., Pham, T. N. H., Huy, N. T., Bay, M. V., Pham, M. Q., Nam, P. C., Vu, V. V., & Ngo, S. T. (2020). Autodock vina adopts more accurate binding poses but autodock4 forms better binding affinity. Journal of Chemical Information and Modeling, 60(1), 204–211. https://doi.org/10.1021/acs.jcim.9b00778
  • Nion, Y. A., & Toyota, K. (2015). Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum. Microbes and Environments, 30(1), 1–11.
  • Pastrana, A. M., Basallote-Ureba, M. J., Aguado, A., Akdi, K., & Capote, N. (2016). Biological control of strawberry soil-borne pathogens Macrophomina phaseolina and Fusarium solani, using Trichoderma asperellum and Bacillus spp. Phytopathologia Mediterranea, 55(1), 109–120.
  • Petsko, G. A., & Ringe, D. (2004). Protein structure and function. New Science Press.
  • Rayatpanah, S., Nanagulyan, S. G., Alav, S. V., Razavi, M., & Ghanbari-Malidarreh, A. (2012). Pathogenic and genetic diversity among Iranian isolates of Macrophomina phaseolina. Chilean Journal of Agricultural Research, 72(1), 40–44. https://doi.org/10.4067/S0718-58392012000100007
  • Rp, B., Sv, P., Tj, K., & Ba, G. (2012). Antagonism of Trichoderma spp. against Macrophomina phaseolina: Evaluation of coiling and cell wall degrading enzymatic activities. Journal of Plant Pathology & Microbiology, 3(7), 1-7.
  • Sadeghzadeh, F., Entezari, A. A., Behzadian, K., Habibi, K., Amiri-Tehranizadeh, Z., Asoodeh, A., Saberi, M. R., & Chamani, J. (2020). Characterizing the binding of angiotensin converting enzyme I inhibitory peptide to human hemoglobin: Influence of electromagnetic fields. Protein and Peptide Letters, 27(10), 1007–1021.
  • Santos, C. A., Zanphorlin, L. M., Crucello, A., Tonoli, C. C., Ruller, R., Horta, M. A., Murakami, M. T., & de Souza, A. P. (2016). Crystal structure and biochemical characterization of the recombinant ThBgl, a GH1 β-glucosidase overexpressed in Trichoderma harzianum under biomass degradation conditions. Biotechnology for Biofuels, 9(1), 11. https://doi.org/10.1186/s13068-016-0487-0
  • Shanmugam, R., Kim, I.-W., Tiwari, M. K., Gao, H., Mardina, P., Das, D., Kumar, A., Jeya, M., Kim, S.-Y., Kim, Y. S., & Lee, J.-K. (2020). Tyr320 is a molecular determinant of the catalytic activity of β-glucosidase from Neosartorya fischeri. International Journal of Biological Macromolecules, 151, 609–617.
  • Sternberg, D., Vijayakumar, P., & Reese, E. T. (1977). β-Glucosidase: Microbial production and effect on enzymatic hydrolysis of cellulose. Canadian Journal of Microbiology, 23(2), 139–147.
  • Tanbin, S., Ahmad Fuad, F. A., & Abdul Hamid, A. A. (2020). Virtual screening for potential inhibitors of human hexokinase II for the development of anti-dengue therapeutics. BioTech, 10(1), 1.
  • Teze, D., Hendrickx, J., Dion, M., Tellier, C., Woods, V. L., Jr, Tran, V., & Sanejouand, Y.-H. (2013). Conserved water molecules in family 1 glycosidases: A DXMS and molecular dynamics study. Biochemistry, 52(34), 5900–5910. https://doi.org/10.1021/bi400260b
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Wang, J., Hou, Q., Dong, L., Liu, Y., & Liu, C. (2011). QM/MM studies on the glycosylation mechanism of rice BGlu1 β-glucosidase. Journal of Molecular Graphics & Modelling, 30, 148–152.
  • Yang, J., Roy, A., & Zhang, Y. (2013). BioLiP: A semi-manually curated database for biologically relevant ligand–protein interactions. Nucleic Acids Research, 41(Database issue), D1096–D1103.
  • Yang, J., Roy, A., & Zhang, Y. (2013). Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20), 2588–2595. https://doi.org/10.1093/bioinformatics/btt447
  • Yoshimi, A., Miyazawa, K., & Abe, K. (2016). Cell wall structure and biogenesis in Aspergillus species. Bioscience, Biotechnology, and Biochemistry, 80(9), 1700–1711.
  • Zare-Feizabadi, N., Amiri-Tehranizadeh, Z., Sharifi-Rad, A., Mokaberi, P., Nosrati, N., Hashemzadeh, F., Rahimi, H. R., Saberi, M. R., & Chamani, J. (2021). Determining the interaction behavior of calf thymus DNA with anastrozole in the presence of histone H1: Spectroscopies and cell viability of MCF-7 cell line investigations. DNA and Cell Biology, 40(8), 1039–1051. https://doi.org/10.1089/dna.2021.0052
  • Zhang, Z., Liu, J.-L., Lan, J.-Y., Duan, C.-J., Ma, Q.-S., & Feng, J.-X. (2014). Predominance of Trichoderma and Penicillium in cellulolytic aerobic filamentous fungi from subtropical and tropical forests in China, and their use in finding highly efficient β-glucosidase. Biotechnology for Biofuels, 7(1), 14. https://doi.org/10.1186/1754-6834-7-107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.