337
Views
3
CrossRef citations to date
0
Altmetric
Research articles

New styrylquinoxaline: synthesis, structural, biological evaluation, ADMET prediction and molecular docking investigations

, , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 2861-2877 | Received 29 Oct 2021, Accepted 06 Feb 2022, Published online: 17 Feb 2022

References

  • Aakeröy, C. B., Wijethunga, T. K., & Desper, J. (2015). Molecular electrostatic potential dependent selectivity of hydrogen bonding. New Journal of Chemistry, 39(2), 822–828. https://doi.org/10.1039/C4NJ01324G
  • Abad, N., Lgaz, H., Atioglu, Z., Akkurt, M., Mague, J. T., Ali, I. H., Chung, I.-M., Salghi, R., Essassi, E. M., & Ramli, Y. (2020). Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline. Journal of Molecular Structure, 1221, 128727. https://doi.org/10.1016/j.molstruc.2020.128727
  • Abad, N., Sallam, H. H., Al-Ostoot, F. H., Khamees, H. A., Al-Horaibi, S. A., A, S. M., Khanum, S. A., Madegowda, M., Hafi, M. E., Mague, J. T., Essassi, E. M., & Ramli, Y. (2021). Synthesis, crystal structure, DFT calculations, Hirshfeld surface analysis, energy frameworks, molecular dynamics and docking studies of novel isoxazolequinoxaline derivative (IZQ) as anti-cancer drug. Journal of Molecular Structure, 1232, 130004. https://doi.org/10.1016/j.molstruc.2021.130004
  • Abdel-Rahman, L. H., Basha, M. T., Al-Farhan, B. S., Shehata, M. R., Mohamed, S. K., & Ramli, Y. (2022). [Cu(dipicolinoylamide)(NO3)(H2O)] as anti-COVID-19 and antibacterial drug candidate: Design, synthesis, crystal structure, DFT and molecular docking. Journal of Molecular Structure, 1247, 131348. https://doi.org/10.1016/j.molstruc.2021.131348
  • Aihara, J. (2000). Correlation found between the HOMO–LUMO energy separation and the chemical reactivity at the most reactive site for isolated-pentagon isomers of fullerenes. Physical Chemistry Chemical Physics, 2(14), 3121–3125. https://doi.org/10.1039/b002601h
  • Averbukh, I., Ben-Zvi, D., Mishra, S., & Barkai, N. (2014). Scaling morphogen gradients during tissue growth by a cell division rule. Development (Cambridge, England), 141(10), 2150–2156. https://doi.org/10.1242/dev.107011
  • Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review A: General Physics, 38(6), 3098–3100. https://doi.org/10.1103/physreva.38.3098
  • Bhat, M., Zinjarde, S. S., Bhargava, S. Y., Kumar, A. R., & Joshi, B. N. (2011). Antidiabetic indian plants: A good source of potent amylase inhibitors, evidence-based complement. Evidence-Based Complementary and Alternative Medicine, 2011, 1–6. https://doi.org/10.1093/ecam/nen040
  • Blaak, E. E., Antoine, J.-M., Benton, D., Björck, I., Bozzetto, L., Brouns, F., Diamant, M., Dye, L., Hulshof, T., Holst, J. J., Lamport, D. J., Laville, M., Lawton, C. L., Meheust, A., Nilson, A., Normand, S., Rivellese, A. A., Theis, S., Torekov, S. S., & Vinoy, S. (2012). Impact of postprandial glycaemia on health and prevention of disease. Obesity Reviews, 13(10), 923–984. https://doi.org/10.1111/j.1467-789X.2012.01011.x
  • Bouyahya, A., Lagrouh, F., Omari, N. E., Bourais, I., Jemli, M. E., Marmouzi, I., Salhi, N., Faouzi, M. E. A., Belmehdi, O., Dakka, N., & Bakri, Y. (2020). Essential oils of Mentha viridis rich phenolic compounds show important antioxidant, antidiabetic, dermatoprotective, antidermatophyte and antibacterial properties. Biocatalysis and Agricultural Biotechnology, 23, 101471. https://doi.org/10.1016/j.bcab.2019.101471
  • Bruker. (2016). Apex3, Saint, Sadabs & Shelxtl. Bruker AXS, Inc.
  • Chen, J., Li, L., Zhou, X., Li, B., Zhang, X., & Hui, R. (2018). Structural characterization and α-glucosidase inhibitory activity of polysaccharides extracted from Chinese traditional medicine Huidouba. International Journal of Biological Macromolecules, 117, 815–819. https://doi.org/10.1016/j.ijbiomac.2018.05.192
  • Chinnam, P., Mohsin, M., & Shafee, L. M. (2012). Evaluation of acute toxicity of pioglitazone in mice. Toxicology International, 19(3), 250–254. https://doi.org/10.4103/0971-6580.103660
  • Cruz, J. V., Neto, M. F A., Silva, L. B., da, R., Ramos, S., da, J., Costa, S., Brasil, D. S B., Lobato, C. C., da Costa, G. V., Bittencourt, J. A. H. M., da Silva, C. H. T P., Leite, F. H. A., & Santos, C. B. R. (2018). Identification of novel protein kinase receptor type 2 inhibitors using pharmacophore and structure-based virtual screening. Molecules, 23(2), 453. 23020453. https://doi.org/10.3390/molecules
  • Dennington, R., Keith, T., & Millam, J. (2009). Gauss View, Version 5. https://www.scirp.org/(S(vtj3fa45qm1ean45vvffcz55)).
  • Dewangan, D., Nakhate, K. T., Verma, V. S., Nagori, K., Badwaik, H., Nair, N., Tripathi, D. K., & Mishra, A. (2018). Synthesis and molecular docking study of novel hybrids of 1,3,4‐oxadiazoles and quinoxaline as a potential analgesic and anti-inflammatory agents. Journal of Heterocyclic Chemistry, 55(12), 2901–2910. https://doi.org/10.1002/jhet.3363
  • Ditchfield, R. (1972). Molecular orbital theory of magnetic shielding and magnetic susceptibility. Journal of Chemical Physics, 56(11), 5688–5691. https://doi.org/10.1063/1.1677088
  • Dos Santos, C. B. R., da, R., Ramos, S., Ortiz, B. L. S., da Silva, G. M., Giuliatti, S., Balderas-Lopez, J. L., Navarrete, A., & Carvalho, J. C. T. (2018). Oil from the fruits of Pterodon emarginatus Vog.: A traditional anti-inflammatory. Study combining in vivo and in silico. Journal of Ethnopharmacology, 222, 107–120. https://doi.org/10.1016/j.jep.2018.04.041
  • Fleming, I., & Wiley, J. (1979). Frontier orbitals and organic chemical reactions. Journal of Molecular Structure, 56, 306. https://doi.org/10.1016/0022-2860(79)80172-6
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J., & Fox, D. J. (2010). Gaussian 09. Wallingford, CT: Gaussian, Inc.
  • Fujisawa, T., Ikegami, H., Inoue, K., Kawabata, Y., & Ogihara, T. (2005). Effect of two alpha-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism: Clinical and Experimental, 54(3), 387–390. https://doi.org/10.1016/j.metabol.2004.10.004
  • Ghose, A., & Viswanadhan, V. (2001). Tools for designing diverse, druglike, cost-effective combinatorial libraries. Combinatorial Library Design and Evaluation, 321–356. https://doi.org/10.1201/9781482270761-16
  • Gilman, J. J. (2007). Bond modulus and stability of covalent solids. Philosophical Magazine Letters, 87(2), 121–124. https://doi.org/10.1080/09500830601166974
  • Guerrab, W., Jemli, M. E., Akachar, J., Demirtaş, G., Mague, J. T., Taoufik, J., Ibrahimi, A., Ansar, M., Alaoui, K., & Ramli, Y. (2021). Design, synthesis, structural and molecular characterization, toxicity, psychotropic activity and molecular docking evaluation of a novel phenytoin derivative: 3-decyl-5,5-diphenylimidazolidine-2,4-dione. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.1922096
  • Hashim, A., Khan, M. S., Khan, M. S., Baig, M. H., & Ahmad, S. (2013). Antioxidant and α-amylase inhibitory property of Phyllanthus virgatus L.: An in vitro and molecular interaction study. BioMed Research International, 2013, 729393–729312. https://doi.org/10.1155/2013/729393
  • Hinsberg, O. (1887). Ueber Chinoxalinbasen, Justus Liebig’s Ann. Justus Liebig's Annalen Der Chemie, 237(3), 327–372. https://doi.org/10.1002/jlac.18872370305
  • Ibrahim, M. K., Eissa, I. H., Abdallah, A. E., Metwaly, A. M., Radwan, M. M., & ElSohly, M. A. (2017). Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of novel quinoxaline derivatives as potential PPARγ and SUR agonists. Bioorganic & Medicinal Chemistry, 25(4), 1496–1513. https://doi.org/10.1016/j.bmc.2017.01.015
  • International Diabetes Federation. ( 2019). IDF diabetes atlas (9th ed.). International Diabetes Federation. https://idf.org/ aboutdiabetes/what-is-diabetes/facts-figures.html.
  • Jayaram, B., Singh, T., Mukherjee, G., Mathur, A., Shekhar, S., & Shekhar, V. (2012). Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 13(Suppl 17), S7. https://doi.org/10.1186/1471-2105-13-S17-S7
  • Kee, K. T., Koh, M., Oong, L. X., & Ng, K. (2013). Screening culinary herbs for antioxidant and α-glucosidase inhibitory activities. International Journal of Food Science & Technology, 48(9), 1884–1891. https://doi.org/10.1111/ijfs.12166
  • Khaldan, A., Bouamrane, S., En-Nahli, F., El-Mernissi, R., El Khatabi, K., Hmamouchi, R., Maghat, H., Ajana, M. A., Sbai, A., Bouachrine, M., & Lakhlifi, T. (2021). Prediction of potential inhibitors of SARS-CoV-2 using 3D-QSAR, molecular docking modeling and ADMET properties. Heliyon, 7(3), e06603. https://doi.org/10.1016/j.heliyon.2021.e06603
  • Khan, I., Panini, P., Khan, SU-D., Rana, U. A., Andleeb, H., Chopra, D., Hameed, S., & Simpson, J. (2016). Exploiting the role of molecular electrostatic potential, deformation density, topology, and energetics in the characterization of S···N and Cl···N supramolecular motifs in crystalline triazolothiadiazoles. Crystal Growth and Design, 16(3), 1371–1386. https://doi.org/10.1021/acs.cgd.5b01499
  • Khan, M. S., Munawar, M. A., Ashraf, M., Alam, U., Ata, A., Asiri, A. M., Kousar, S., & Khan, M. A. (2014). Synthesis of novel indenoquinoxaline derivatives as potent α-glucosidase inhibitors. Bioorganic & Medicinal Chemistry, 22(3), 1195–1200. https://doi.org/10.1016/j.bmc.2013.12.024
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Kramer, C., Ting, A., Zheng, H., Hert, J., Schindler, T., Stahl, M., Robb, G., Crawford, J. J., Blaney, J., Montague, S., Leach, A. G., Dossetter, A. G., & Griffen, E. J. (2018). Learning medicinal chemistry absorption, distribution, metabolism, excretion, and toxicity (ADMET) rules from cross-company matched molecular pairs analysis (MMPA). Journal of Medicinal Chemistry, 61(8), 3277–3292. https://doi.org/10.1021/acs.jmedchem.7b00935
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B: Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • Liu, J., Shang, F., Yang, Z., Wu, M., & Zhao, J. (2017). Structural analysis of a homogeneous polysaccharide from Achatina fulica. International Journal of Biological Macromolecules, 98, 786–792. https://doi.org/10.1016/j.ijbiomac.2017.01.149
  • Liu, W., Hu, C., Liu, Y., Dai, S., Lu, W., Lv, X., Yao, W., & Gao, X. (2017). Preparation, characterization, and α-glycosidase inhibition activity of a carboxymethylated polysaccharide from the residue of Sarcandra glabra (Thunb.) Nakai. International Journal of Biological Macromolecules, 99, 454–464. https://doi.org/10.1016/j.ijbiomac.2017.02.065
  • Luo, Y.-H., & Sun, B.-W. (2013). Pharmaceutical co-crystals of pyrazinecarboxamide (PZA) with various carboxylic acids: Crystallography, hirshfeld surfaces, and dissolution study. Crystal Growth and Design, 13(5), 2098–2106. https://doi.org/10.1021/cg400167w
  • Missioui, M., Essassi, E. M., Mague, J. T., & Ramli, Y. (2020). Synthesis and crystal structure of (E)-1-benzyl-3-(4-methoxystyryl)quinoxalin-2(1H)-one, C24H20N2O2. Zeitschrift Für Kristallographie – New Crystal Structures, 235(6), 1323–1325. https://doi.org/10.1515/ncrs-2020-0300
  • Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A., & Ramli, Y. (2021). Novel antioxidant quinoxaline derivative: Synthesis, crystal structure, theoretical studies, antidiabetic activity and molecular docking study. Journal of Molecular Structure, 1239, 130484. https://doi.org/10.1016/j.molstruc.2021.130484
  • Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., & Ramli, Y. (2022). Docking of disordered independent molecules of novel crystal structure of (N-(4-methoxyphenyl)-2-(3-methyl-2-oxo-3,4-dihydroquinoxalin-1(2H)-yl)acetamide as anti-COVID-19 and anti-Alzheimer’s disease. Crystal structure, HSA/DFT/XRD. Journal of Molecular Structure, 1247, 131420. https://doi.org/10.1016/j.molstruc.2021.131420
  • Missioui, M., Said, M. A., Demirtaş, G., Mague, J. T., Al-Sulami, A., Al-Kaff, N. S., & Ramli, Y. (2022). A possible potential COVID-19 drug candidate: Diethyl 2-(2-(2-(3-methyl-2-oxoquinoxalin-1(2H)-yl)acetyl)hydrazono)malonate: Docking of disordered independent molecules of a novel crystal structure, HSA/DFT/XRD and cytotoxicity. Arabian Journal of Chemistry, 15(2), 103595. https://doi.org/10.1016/j.arabjc.2021.103595
  • Nair, S. S., Kavrekar, V., & Mishra, A. (2013). In vitro studies on alpha amylase and alpha glucosidase inhibitory activities of selected plant extracts. European Journal of Experimental Biology, 3(1), 128–132. www.pelagiaresearchlibrary.com.
  • Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986–28006. https://doi.org/10.1039/C4RA13315C
  • Noblía, P., Vieites, M., Torre, M. H., Costa-Filho, A. J., Cerecetto, H., González, M., Lavaggi, M. L., Adachi, Y., Sakurai, H., & Gambino, D. (2006). Novel vanadyl complexes with quinoxaline N(1),N(4)-dioxide derivatives as potent in vitro insulin-mimetic compounds . Journal of Inorganic Biochemistry, 100(2), 281–287. https://doi.org/10.1016/j.jinorgbio.2005.11.012
  • OECD. (2002). Guidance Document on Acute Oral Toxicity Testing. OECD. https://doi.org/10.1787/9789264078413-en
  • Oprea, T. I. (2000). Property distribution of drug-related chemical databases. Journal of Computer-Aided Molecular Design, 14(3), 251–264. https://doi.org/10.1023/A:1008130001697.
  • Patel, H. M., Bhardwaj, V., Sharma, P., Noolvi, M. N., Lohan, S., Bansal, S., & Sharma, A. (2019). Quinoxaline-PABA bipartite hybrid derivatization approach: Design and search for antimicrobial agents. Journal of Molecular Structure, 1184, 562–568. https://doi.org/10.1016/j.molstruc.2019.02.074
  • Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. R. (2009). Introduction to Spectroscopy. Cengage Learning.
  • Prabakaran, G., Manivarman, S., & Bharanidharan, M. (2020). Catalytic synthesis, ADMET, QSAR and molecular modeling studies of novel chalcone derivatives as highly potent antioxidant agents.  Journal of Xidian University, 14, 85-106. https://doi.org/10.1016/j.matpr.2020.11.166
  • Putz, H., & Brandenburg, K. (2012). Diamond – Crystal and molecular structure visualization. Putz, H., & Brandenburg, K. (2012). Diamond - Crystal and Molecular Structure Visualization Crystal Impact.
  • Ramli, Y., & Essassi, E. M. (2015). Advances in synthetic approaches, functionnalization and biological properties of quinoxaline derivatives. In J. C. Taylor (Ed.), Advances in Chemistry Research (Vol. 27, pp. 109–160). Nova Science Publishers.
  • Ramli, Y., Moussaif, A., Karrouchi, K., & Essassi, E. M. (2014). Pharmacological profile of quinoxalinone. Journal of Chemistry, 2014, 1–21. https://doi.org/10.1155/2014/563406
  • Ramos, R. S., Macêdo, W. J. C., Costa, J. S., de, C. H. T., da Silva, P., Rosa, J. M C., da Cruz, J. N., de Oliveira, M. S., de Aguiar Andrade, E. H., Silva, R. B. L. e., Souto, R. N. P., & Santos, C. B. R. (2020). Potential inhibitors of the enzyme acetylcholinesterase and juvenile hormone with insecticidal activity: Study of the binding mode via docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics, 38(16), 4687–4709. https://doi.org/10.1080/07391102.2019.1688192
  • Ramos, R., Costa, J., Silva, R., da Costa, G., Rodrigues, A., Rabelo, É., Souto, R., Taft, C., Silva, C., Rosa, J., Santos, C., & Macêdo, W. (2019). Identification of potential inhibitors from pyriproxyfen with insecticidal activity by virtual screening. Pharmaceuticals, 12(1), 20. https://doi.org/10.3390/ph12010020
  • Roig-Zamboni, V., Cobucci-Ponzano, B., Iacono, R., Ferrara, M. C., Germany, S., Bourne, Y., Parenti, G., Moracci, M., & Sulzenbacher, G. (2017). Structure of human lysosomal acid α-glucosidase – A guide for the treatment of Pompe disease. Nature Communication, 8(1), 1111. https://doi.org/10.1038/s41467-017-01263-3.
  • Saleem, U., Amin, S., Ahmad, B., Azeem, H., Anwar, F., & Mary, S. (2017). Acute oral toxicity evaluation of aqueous ethanolic extract of Saccharum munja Roxb. roots in albino mice as per OECD 425 TG. Toxicology Reports, 4, 580–585. https://doi.org/10.1016/j.toxrep.2017.10.005
  • Salhi, N., Bouyahya, A., El-Goumari, O., Jemly, M. E., Bourais, I., Zellou, A., Cherrah, Y., & Faouzi, M. E. A. (2020). Investigation of in vitro and in vivo antioxidant and antidiabetic activities of Pinus halepensis extracts. Journal of Herbmed Pharmacology, 10(1), 123–131. https://doi.org/10.34172/jhp.2021.13
  • Saravana Mani, K., Murugesapandian, B., Kaminsky, W., & Rajendran, S. P. (2018). Enantioselective approach towards the synthesis of spiro-indeno [1,2-b] quinoxaline pyrrolothiazoles as antioxidant and antiproliferative. Tetrahedron Letters, 59(30), 2921–2929. https://doi.org/10.1016/j.tetlet.2018.06.035
  • Seth, S. K., Maity, G. C., & Kar, T. (2011). Structural elucidation, Hirshfeld surface analysis and quantum mechanical study of para-nitro benzylidene methyl arjunolate. Journal of Molecular Structure, 1000(1–3), 120–126. https://doi.org/10.1016/j.molstruc.2011.06.003
  • Sheldrick, G. M. (2009). TWINABS. University of Göttingen.
  • Sheldrick, G. M. (2015a). Crystal structure refinement with SHELXL. Acta Crystallographic Section C: Structural Chemistry, 71(Part 1), 3–8. https://doi.org/10.1107/S2053229614024218
  • Sheldrick, G. M. (2015b). SHELXT—integrated space-group and crystal-structure determination. Acta Crystallographica Section A: Foundations and Advances, 71(Part 1), 3–8. https://doi.org/10.1107/S2053273314026370
  • Shen, Q.-K., Gong, G.-H., Li, G., Jin, M., Cao, L.-H., & Quan, Z.-S. (2020). Discovery and evaluation of novel synthetic 5-alkyl-4-oxo-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinoxaline-1-carbox-amide derivatives as anti-inflammatory agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 85–95. https://doi.org/10.1080/14756366.2019.1680658
  • Spectragryph – Optical spectroscopy software: Licenses/Pricing. (n.d.). https://www.effemm2.de/spectragryph/license.html.
  • Srinivasarao, S., Nandikolla, A., Suresh, A., Ewa, A.-K., Głogowska, A., Ghosh, B., Kumar, B. K., Murugesan, S., Pulya, S., Aggarwal, H., & Sekhar, KVGC. (2020). Discovery of 1,2,3-triazole based quinoxaline-1,4-di-N-oxide derivatives as potential anti-tubercular agents. Bioorganic Chemistry, 100, 103955. https://doi.org/10.1016/j.bioorg.2020.103955
  • Tarpada, U. P., Thummar, B. B., & Raval, D. K. (2017). A green protocol for the synthesis of quinoxaline derivatives catalyzed by polymer supported sulphanilic acid. Arabian Journal of Chemistry, 10, S2902–S2907. 021. https://doi.org/10.1016/j.arabjc.2013.11
  • Tighadouini, S., Roby, O., Mortada, S., Lakbaibi, Z., Radi, S., Al-Ali, A., Faouzi, M. E. A., Ferbinteanu, M., Garcia, Y., Al-Zaqri, N., Zarrouk, A., & Warad, I. (2022). Crystal structure, physicochemical, DFT, optical, keto-enol tautomerization, docking, and anti-diabetic studies of (Z)-pyrazol β-keto-enol derivative. Journal of Molecular Structure, 1247, 131308. https://doi.org/10.1016/j.molstruc.2021.131308
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.
  • van Breemen, R. B., & Li, Y. (2005). Caco-2 cell permeability assays to measure drug absorption. Expert Opinion on Drug Metabolism & Toxicology, 1(2), 175–185. https://doi.org/10.1517/17425255.1.2.175
  • Venhorst, J., ter Laak, A. M., Commandeur, J. N. M., Funae, Y., Hiroi, T., & Vermeulen, N. P. E. (2003). Homology modeling of rat and human cytochrome P450 2D (CYP2D) isoforms and computational rationalization of experimental ligand-binding specificities. Journal of Medicinal Chemistry, 46(1), 74–86. https://doi.org/10.1021/jm0209578
  • Weng, L., Chen, T.-H., Zheng, Q., Weng, W.-H., Huang, L., Lai, D., Fu, Y.-S., & Weng, C.-F. (2021). Syringaldehyde promoting intestinal motility with suppressing α-amylase hinders starch digestion in diabetic mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 141, 111865. https://doi.org/10.1016/j.biopha.2021.111865
  • Williams, L. K., Li, C., Withers, S. G., & Brayer, G. D. (2012). Order and disorder: Differential structural impacts of myricetin and ethyl caffeate on human amylase, an antidiabetic target. Journal of Medicinal Chemistry, 55(22), 10177–10186. https://doi.org/10.1021/jm301273u
  • Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak Vinković, D., & Jhoti, H. (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature, 424(6947), 464–468. https://doi.org/10.1038/nature01862
  • Wolff, D. S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., & Spackman, J. M. A. (2012). CrystalExplorer (Version 3. 1). University of Westestern Australia. https://doi.org/10.1039/b704980c
  • Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251–8260. https://doi.org/10.1021/ja00179a005
  • Wu, J. Q., Kosten, T. R., & Zhang, X. Y. (2013). Free radicals, antioxidant defense systems, and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 46, 200–206. https://doi.org/10.1016/j.pnpbp.2013.02.015
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yadava, U., Gupta, D. K., & Roychoudhury, M. (2010). Theoretical investigations on molecular structure and IR frequencies of 4-n-nonyl-4′-cyanobiphenyl in light of experimental results. Journal of Molecular Liquids, 156(2–3), 187–190. https://doi.org/10.1016/j.molliq.2010.06.002
  • Yadava, U., Yadav, S. K., & Yadav, R. K. (2017a). Electronic structure, vibrational assignments and simulation studies with A/T rich DNA duplex of an aromatic bis-amidine derivative. DNA Repair, 60, 9–17. https://doi.org/10.1016/j.dnarep.2017.10.005
  • Yadava, U., Yadav, V. K., & Yadav, R. K. (2017b). Novel anti-tubulin agents from plant and marine origins: Insight from a molecular modeling and dynamics study. RSC Advances, 7(26), 15917–15925. https://doi.org/10.1039/C7RA00370F
  • Yan, A., Wang, Z., & Cai, Z. (2008). Prediction of human intestinal absorption by GA feature selection and support vector machine regression. International Journal of Molecular Sciences, 9(10), 1961–1976. https://doi.org/10.3390/ijms9101961
  • Zaoui, Y., Ramli, Y., Tan, S. L., Tiekink, E. R. T., Chemlal, L., Mague, J. T., Taoufik, J., Faouzi, M. E. A., & Ansar, M. (2021). Synthesis, structural characterisation and theoretical studies of a novel pyridazine derivative: Investigations of anti-inflammatory activity and inhibition of α-glucosidase. Journal of Molecular Structure, 1234, 130177. https://doi.org/10.1016/j.molstruc.2021.130177
  • Zhang, H., Zhang, L., Gao, C., Yu, R., & Kang, C. (2021). Pharmacophore screening, molecular docking, ADMET prediction and MD simulations for identification of ALK and MEK potential dual inhibitors. Journal of Molecular Structure, 1245, 131066. https://doi.org/10.1016/j.molstruc.2021.131066
  • Zheng, C.-B., Gao, W.-C., Pang, P.-P., Ma, X., Peng, L.-C., Yang, L., & Li, X. (2021). Synthesis and vasorelaxant evaluation of novel 7-methoxyl-2,3-disubstituted-quinoxaline derivatives. Bioorganic & Medicinal Chemistry Letters, 36, 127785. https://doi.org/10.1016/j.bmcl.2021.127785

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.