229
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Efficacy of defensins as neutralizing agents against the deadly SARS-CoV-2

, &
Pages 2911-2925 | Received 17 Jun 2021, Accepted 08 Feb 2022, Published online: 22 Feb 2022

References

  • Adrogué, H. J., & Madias, N. E. (2000). Hyponatremia. The New England Journal of Medicine, 342(21), 1581–1589. https://doi.org/10.1056/NEJM200005253422107
  • Ahmed, S., Mahtarin, R., Islam, M. S., Das, S., Al Mamun, A., Ahmed, S. S., & Ali, M. A. (2021). Remdesivir analogs against SARS-CoV-2 RNA-dependent RNA polymerase. Journal of Biomolecular Structure & Dynamics, 1–14. Advance online publication. https://doi.org/10.1080/07391102.2021.1955743
  • Ahmed, A., Siman-Tov, G., Hall, G., Bhalla, N., & Narayanan, A. (2019). Human antimicrobial peptides as therapeutics for viral infections. Viruses, 11(8), 704. https://doi.org/10.3390/v11080704
  • Ali, A., & Vijayan, R. (2020). Dynamics of the ACE2–SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Scientific Reports, 10(1), 14214. https://doi.org/10.1038/s41598-020-71188-3
  • Bateman, A. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515. https://doi.org/10.1093/nar/gky1049
  • Baxter, A. A., Richter, V., Lay, F. T., Poon, I. K. H., Adda, C. G., Veneer, P. K., Phan, T. K., Bleackley, M. R., Anderson, M. A., Kvansakul, M., & Hulett, M. D. (2015). The tomato defensin TPP3 binds phosphatidylinositol (4,5)-bisphosphate via a conserved dimeric cationic grip conformation to mediate cell lysis. Molecular and Cellular Biology, 35(11), 1964–1978. https://doi.org/10.1128/MCB.00282-15
  • Belouzard, S., Millet, J. K., Licitra, B. N., & Whittaker, G. R. (2012). Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4(6), 1011–1033. https://doi.org/10.3390/v4061011
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • BIOVIA (2021)., Dassault Systèmes, Discovery Studio. Dassault Systèmes (Vol. 2021).
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossváry, I., Moraes, M. A., Sacerdoti, F. D., Salmon, J. K., Shan, Y., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida, November 11–17,
  • Bruix, M., Jiménez, M. A., Santoro, J., González, C., Colilla, F. J., Méndez, E., & Rico, M. (1993). Solution Structure of gamma 1-H and gamma 1-P thionins from barley and wheat endosperm determined by 1H-NMR: A structural motif common to toxic arthropod proteins . Biochemistry, 32(2), 715–724. https://doi.org/10.1021/bi00053a041
  • Chan, K. K., Dorosky, D., Sharma, P., Abbasi, S. A., Dye, J. M., Kranz, D. M., Herbert, A. S., & Procko, E. (2020). Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science (New York, N.Y.), 369(6508), 1261–1265. https://doi.org/10.1126/science.abc0870
  • DasGupta, D., Mandalaparthy, V., & Jayaram, B. (2017). A component analysis of the free energies of folding of 35 proteins: A consensus view on the thermodynamics of folding at the molecular level. Journal of Computational Chemistry, 38(32), 2791–2801. https://doi.org/10.1002/jcc.25072
  • De Coninck, B., Cammue, B. P. A., & Thevissen, K. (2013). Modes of antifungal action and in planta functions of plant defensins and defensin-like peptides. Fungal Biology Reviews, 26(4), 109–120. https://doi.org/10.1016/j.fbr.2012.10.002
  • Ding, J., Chou, Y. Y., & Chang, T. L. (2009). Defensins in viral infections. Journal of Innate Immunity, 1(5), 413–420. https://doi.org/10.1159/000226256
  • Fernandez de Caleya, R., Gonzalez-Pascual, B., García-Olmedo, F., & Carbonero, P. (1972). Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Applied Microbiology, 23(5), 998–1000. https://doi.org/10.1128/aem.23.5.998-1000.1972
  • Francisco, A., G. C., & Georgina, E. (2017). Structural motifs in class I and class II plant defensins for phospholipid interactions: Intriguing role of ligand binding and modes of action. Journal of Plant Physiology & Pathology, 05(01), 2-7. https://doi.org/10.4172/2329-955X.1000159
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the expasy server. In The Proteomics Protocols Handbook. https://doi.org/10.1385/1-59259-890-0:571
  • Gheblawi, M., Wang, K., Viveiros, A., Nguyen, Q., Zhong, J. C., Turner, A. J., Raizada, M. K., Grant, M. B., & Oudit, G. Y. (2020). Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circulation Research, 126(10), 1456–1474. https://doi.org/10.1161/CIRCRESAHA.120.317015
  • Goldman, M. J., Anderson, G. M., Stolzenberg, E. D., Kari, U. P., Zasloff, M., & Wilson, J. M. (1997). Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell, 88(4), 553–560. https://doi.org/10.1016/S0092-8674(00)81895-4
  • Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., Wang, H., Wan, J., Wang, X., & Lu, Z. (2020). Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiology, 5(7), 811–818. https://doi.org/10.1001/jamacardio.2020.1017
  • Guy, J. L., Jackson, R. M., Jensen, H. A., Hooper, N. M., & Turner, A. J. (2005). Identification of critical active-site residues in angiotensin-converting enzyme-2 (ACE2) by site-directed mutagenesis. The FEBS Journal, 272(14), 3512–3520. https://doi.org/10.1111/j.1742-4658.2005.04756.x
  • Han, Y., & Král, P. (2020). Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano, 14(4), 5143–5147. https://doi.org/10.1021/acsnano.0c02857
  • Heald-Sargent, T., & Gallagher, T. (2012). Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses, 4(4), 557–580. https://doi.org/10.3390/v4040557
  • Huang, Y., Yang, C., Xu, X., Feng, Xu, W., & Liu, S. & Wen, (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4
  • Imai, Y., Kuba, K., & Penninger, J. M. (2007). Angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Cellular and Molecular Life Sciences: CMLS, 64(15), 2006–2012. https://doi.org/10.1007/s00018-007-6228-6
  • Imai, Y., Kuba, K., Rao, S., Huan, Y., Guo, F., Guan, B., Yang, P., Sarao, R., Wada, T., Leong-Poi, H., Crackower, M. A., Fukamizu, A., Hui, C. C., Hein, L., Uhlig, S., Slutsky, A. S., Jiang, C., & Penninger, J. M. (2005). Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 436(7047), 112–116. https://doi.org/10.1038/nature03712
  • Jiang, Y., Yang, D., Li, W., Wang, B., Jiang, Z., & Li, M. (2012). Antiviral activity of recombinant mouse β-defensin 3 against influenza a virus in vitro and in vivo. Antiviral Chemistry & Chemotherapy, 22(6), 255–262. https://doi.org/10.3851/IMP2077
  • Kerenga, B. K., McKenna, J. A., Harvey, P. J., Quimbar, P., Garcia-Ceron, D., Lay, F. T., Phan, T. K., Veneer, P. K., Vasa, S., Parisi, K., Shafee, T. M. A., Van Der Weerden, N. L., Hulett, M. D., Craik, D. J., Anderson, M. A., & Bleackley, M. R. (2019). Salt-tolerant antifungal and antibacterial activities of the corn defensin ZmD32. Frontiers in Microbiology, 10, 795 https://doi.org/10.3389/fmicb.2019.00795
  • Kim, D. E., Chivian, D., & Baker, D. (2004). Protein structure prediction and analysis using the Robetta server. Nucleic Acids Research, 32 (Web Server), W526–W531. https://doi.org/10.1093/nar/gkh468
  • Kit, Y. (2020). Features of the interaction of humans defensins with the SARS-CoV-2 spike protein : An in silico comparative analysis. https://doi.org/10.13140/RG.2.2.22222.41281
  • Klotman, M. E., & Chang, T. L. (2006). Defensins in innate antiviral immunity. Nature Reviews. Immunology, 6(6), 447–456. https://doi.org/10.1038/nri1860
  • Kota, S., Sabbah, A., Te, H. C., Harnack, R., Xiang, Y., Meng, X., & Bose, S. (2008). Role of human beta-defensin-2 during tumor necrosis factor-alpha/NF-kappaB-mediated innate antiviral response against human respiratory syncytial virus . The Journal of Biological Chemistry, 283(33), 22417–22429. https://doi.org/10.1074/jbc.M710415200
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Lay, F., & Anderson, M. (2005). Defensins-components of the innate immune system in plants. Current Protein & Peptide Science, 6(1), 85–101. https://doi.org/10.2174/1389203053027575
  • Letko, M., Marzi, A., & Munster, V. (2020). Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5(4), 562–569. https://doi.org/10.1038/s41564-020-0688-y
  • Li, J., Wang, X., Chen, J., Zhang, H., & Deng, A. (2020). Association of renin-angiotensin system inhibitors with severity or risk of death in patients with hypertension hospitalized for coronavirus disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiology, 5(7), 825. https://doi.org/10.1001/jamacardio.2020.1624
  • Mettenleiter, T. C. (2001). Brief overview on cellular virus receptors. Virus Research, 82(1-2), 3–8. https://doi.org/10.1016/S0168-1702(01)00380-X
  • Mohanram, H., & Bhattacharjya, S. (2016). Salt-resistant short antimicrobial peptides. Biopolymers, 106(3), 345–356. https://doi.org/10.1002/bip.22819
  • Mustafa, S., Balkhy, H., & Gabere, M. (2019). Peptide-protein interaction studies of antimicrobial peptides targeting middle east respiratory syndrome coronavirus spike protein: An in silico approach. Advances in Bioinformatics, 2019, 6815105. https://doi.org/10.1155/2019/6815105
  • Ni, W., Yang, X., Liu, J., Bao, J., Li, R., Xu, Y., Guo, W., Hu, Y., & Gao, Z. (2020). Acute myocardial injury at hospital admission is associated with all-cause mortality in covid-19. Journal of the American College of Cardiology, 76(1), 124–125. https://doi.org/10.1016/j.jacc.2020.05.007
  • Pachón-Ibáñez, M. E., Smani, Y., Pachón, J., & Sánchez-Céspedes, J. (2017). Perspectives for clinical use of engineered human host defense antimicrobial peptides. FEMS Microbiology Reviews, 41(3), 323–342. https://doi.org/10.1093/femsre/fux012
  • Park, M. S., Kim, J., Il, Lee, I., Park, S., Bae, J. Y., & Park, M. S. (2018). Towards the application of human defensins as antivirals. Biomolecules & Therapeutics, 26(3), 242–254. https://doi.org/10.4062/biomolther.2017.172
  • Pazgier, M., Hoover, D. M., Yang, D., Lu, W., & Lubkowski, J. (2006). Human beta-defensins. Cellular and Molecular Life Sciences : CMLS, 63(11), 1294-313. https://doi.org/10.1007/s00018-005-5540-2
  • Pelegrini, P. B., & Franco, O. L. (2005). Plant gamma-thionins: Novel insights on the mechanism of action of a multi-functional class of defense proteins . The International Journal of Biochemistry & Cell Biology, 37(11), 2239–2253. https://doi.org/10.1016/j.biocel.2005.06.011
  • Reynolds, H. R., Adhikari, S., Pulgarin, C., Troxel, A. B., Iturrate, E., Johnson, S. B., Hausvater, A., Newman, J. D., Berger, J. S., Bangalore, S., Katz, S. D., Fishman, G. I., Kunichoff, D., Chen, Y., Ogedegbe, G., & Hochman, J. S. (2020). Renin–Angiotensin–aldosterone system inhibitors and risk of Covid-19. New England Journal of Medicine, 382(25), 2441–2448. https://doi.org/10.1056/NEJMoa2008975
  • Salas, C. E., Badillo-Corona, J. A., Ramírez-Sotelo, G., & Oliver-Salvador, C. (2015). Biologically active and antimicrobial peptides from plants. BioMed Research International, 2015, 102129 https://doi.org/10.1155/2015/102129
  • Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117
  • Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., Gong, W., Liu, X., Liang, J., Zhao, Q., Huang, H., Yang, B., & Huang, C. (2020). Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiology, 5(7), 802–810. https://doi.org/10.1001/jamacardio.2020.0950
  • Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S., & Gallagher, T. (2011). A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol, 85(2), 873–882. https://doi.org/10.1128/JVI.02062-10
  • Sun, L., Finnegan, C. M., Kish-Catalone, T., Blumenthal, R., Garzino-Demo, P., La Terra Maggiore, G. M., Berrone, S., Kleinman, C., Wu, Z., Abdelwahab, S., Lu, W., & Garzino-Demo, A. (2005). Human β-defensins suppress human immunodeficiency virus infection: Potential role in mucosal protection. Journal of Virology, 79(22), 14318–14329. https://doi.org/10.1128/jvi.79.22.14318-14329.2005
  • Towler, P., Staker, B., Prasad, S. G., Menon, S., Tang, J., Parsons, T., Ryan, D., Fisher, M., Williams, D., Dales, N. A., Patane, M. A., & Pantoliano, M. W. (2004). ACE2 x-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. The Journal of Biological Chemistry, 279(17), 17996–18007. https://doi.org/10.1074/jbc.M311191200
  • Vriens, K., Cammue, B. P. A., & Thevissen, K. (2014). Antifungal plant defensins: Mechanisms of action and production. Molecules (Basel, Switzerland), 19(8), 12280–12303. https://doi.org/10.3390/molecules190812280
  • Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, G. (2012). Natural antimicrobial peptides as promising anti-HIV candidates. Current Topics in Peptide & Protein Research, 13, 93–110.
  • Wang, K., Gheblawi, M., & Oudit, G. Y. (2020). Angiotensin converting enzyme 2: A double-edged sword. Circulation, 142(5), 426–428. https://doi.org/10.1161/CIRCULATIONAHA.120.047049
  • Wang, Z., & Wang, G. (2004). APD: The antimicrobial peptide database. Nucleic Acids Research, 32(90001), 590D–5592. https://doi.org/10.1093/nar/gkh025
  • Wang, Y., Zhang, D., Du, G., Du, R., Zhao, J., Jin, Y., Fu, S., Gao, L., Cheng, Z., Lu, Q., Hu, Y., Luo, G., Wang, K., Lu, Y., Li, H., Wang, S., Ruan, S., Yang, C., Mei, C., … Wang, C. (2020). Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. The Lancet (London, England)), 395(10236), 1569–1578. https://doi.org/10.1016/S0140-6736(20)31022-9
  • Wilson, S. S., Wiens, M. E., Holly, M. K., & Smith, J. G. (2016). Defensins at the mucosal surface: Latest insights into defensin-virus interactions. Journal of Virology, 90(11), 5216–5218. https://doi.org/10.1128/JVI.00904-15
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yan, T., Xiao, R., & Lin, G. (2020). Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 34(5), 6017–6026. https://doi.org/10.1096/fj.202000782
  • Zhang, G., Pomplun, S., Loftis, A. R., Tan, X., Loas, A., & Pentelute, B. L. (2020). Investigation of ACE2 N-terminal fragments binding to SARS-CoV-2 spike RBD. bioRxiv, 43–54. https://doi.org/10.1101/2020.03.19.999318
  • Zhao, H., Zhou, J., Zhang, K., Chu, H., Liu, D., Poon, V. K. M., Chan, C. C. S., Leung, H. C., Fai, N., Lin, Y. P., Zhang, A. J. X., Jin, D. Y., Yuen, K. Y., & Zheng, B. J. (2016). A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Scientific Reports, 6, 22008. https://doi.org/10.1038/srep22008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.