798
Views
0
CrossRef citations to date
0
Altmetric
Research articles

Human variation in the protein receptor ACE2 affects its binding affinity to SARS-CoV-2 in a variant-dependent manner

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2947-2955 | Received 26 Aug 2021, Accepted 09 Feb 2022, Published online: 23 Feb 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Andrusier, N., Nussinov, R., & Wolfson, H. J. (2007). FireDock: fast interaction refinement in molecular docking. Proteins, 69(1), 139–159. https://doi.org/10.1002/prot.21495
  • Astuti, I. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information.
  • Auton, A., Abecasis, G. R., Altshuler, D. M., Durbin, R. M., Bentley, D. R., Chakravarti, A., Clark, A. G., Donnelly, P., Eichler, E. E., Flicek, P., Gabriel, S. B., Gibbs, R. A., Green, E. D., Hurles, M. E., Knoppers, B. M., Korbel, J. O., Lander, E. S., Lee, C., Lehrach, H., Mardis, E. R., … Schloss, J. A. 1000 Genomes Project Consortium. (2015). 2015. A global reference for human genetic variation. Nature, 526(7571), 68–74., https://doi.org/10.1038/nature15393
  • Bahadur Gurung, A., Ajmal Ali, M., Lee, J., Abul Farah, M., Mashay Al-Anazi, K., Al-Hemaid, F., & Sami, H. (2022). Structural and functional insights into the major mutations of SARS-CoV-2 Spike RBD and its interaction with human ACE2 receptor. Journal of King Saud University - Science, 34(2), 101773. https://doi.org/10.1016/j.jksus.2021.101773
  • Benkert, P., Tosatto, S. C. E., & Schomburg, D. (2008). QMEAN: A comprehensive scoring function for model quality assessment. Proteins , 71(1), 261–277. https://doi.org/10.1002/prot.21715
  • Berendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide protein data bank. Nature Structural & Molecular Biology, 10(12), 980–980. 980. https://doi.org/10.1038/nsb1203-980
  • Burley, S. K., Berman, H. M., Bhikadiya, C., Bi, C., Chen, L., Di Costanzo, L., Christie, C., Dalenberg, K., Duarte, J. M., Dutta, S., Feng, Z., Ghosh, S., Goodsell, D. S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., Kalro, T., Liang, Y., … Zardecki, C. (2019). RCSB Protein Data Bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Research, 47(D1), D464–D474. https://doi.org/10.1093/nar/gky1004
  • Chan, K. K., Dorosky, D., Sharma, P., Abbasi, S. A., Dye, J. M., Kranz, D. M., Herbert, A. S., & Procko, E. (2020). Engineering human ACE2 to optimize binding to the spike protein of SARS coronavirus 2. Science (New York, N.Y.), 369(6508), 1261–1265. https://doi.org/10.1126/science.abc0870
  • Cheatham, T. E. I. I. I., Miller, J. L., Fox, T., Darden, T. A., & Kollman, P. A. (1995). Molecular dynamics simulations on solvated biomolecular systems: The particle mesh Ewald method leads to stable trajectories of DNA, RNA, and proteins. Journal of the American Chemical Society, 117(14), 4193–4194. https://doi.org/10.1021/ja00119a045
  • Chen, R., Wang, K., Yu, J., Chen, Z., Wen, C., & Xu, Z. (2020). The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain. bioRxiv 2020.04.07.030650, https://doi.org/10.1101/2020.04.07.030650
  • Cheng, M. H., Krieger, J. M., Kaynak, B., Arditi, M., & Bahar, I. (2021). Impact of South African 501.V2 variant on SARS-CoV-2 spike infectivity and neutralization: A structure-based computational assessment. bioRxiv. https://doi.org/10.1101/2021.01.10.426143
  • Chodera, J. D., & Mobley, D. L. (2013). Entropy-enthalpy compensation: Role and ramifications in biomolecular ligand recognition and design. Annual Review of Biophysics, 42, 121–142. https://doi.org/10.1146/annurev-biophys-083012-130318
  • Consortium, T. U. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47, D506–D515. https://doi.org/10.1093/nar/gky1049
  • Davies, N. G., Abbott, S., Barnard, R. C., Jarvis, C. I., Kucharski, A. J., Munday, J. D., Pearson, C. A. B., Russell, T. W., Tully, D. C., Washburne, A. D., Wenseleers, T., Gimma, A., Waites, W., Wong, K. L. M., van Zandvoort, K., Silverman, J. D., CMMID Covid, 1., Working Group, Covid, 1., Genomics, U. K., (C.-U. K.) Consortium, Diaz-Ordaz, K., Keogh, R., Eggo, R. M., Funk, S., Jit, M., Atkins, K. E., & Edmunds, W. J., CMMID COVID-19 Working Group (2021). Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science (New York, N.Y.) 3055, 1–16. Science, 372(6538), 1-9. https://doi.org/10.1126/science.abg3055
  • de Souza, A. S., de Freitas Amorim, V. M., Guardia, G. D. A., dos Santos, F. R. C., dos Santos, F. F., de Souza, R. F., de Araujo Juvenal, G., Huang, Y., Ge, P., Jiang, Y., Paudel, P., Ulrich, H., Galante, P. A. F., & Guzzo, C. R. (2021). Molecular dynamics analysis of fast-spreading severe acute respiratory syndrome coronavirus 2 variants and their effects in the interaction with human angiotensin-converting enzyme 2. bioRxiv 2021.06.14.448436, https://doi.org/10.1101/2021.06.14.448436
  • Deshpande, R. R., Tiwari, A. P., Nyayanit, N., & Modak, M. (2020). In silico molecular docking analysis for repurposing therapeutics against multiple proteins from SARS-CoV-2. European Journal of Pharmacology, 886, 173430. https://doi.org/10.1016/j.ejphar.2020.173430
  • England, P. H. (2020). Investigation of novel SARS-CoV-2 variant: Variant of Concern 202012/01 – GOV.UK [WWW Document]. Retreived June 3, 2021 https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201.
  • Faria, N. R., Claro, I. M., Candido, D., Franco, L. A. M., Andrade, P. S., Thais, M., Silva, C. A. M., Sales, F. C., Erika, R., Aguiar, R. S., Gaburo, N., Cecília, C., Fraiji, N. A., Crispim, M. A. E., Carvalho, P. S. S., & Rambaut, A. (2021). Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: Preliminary findings. Virological.Org 1–9.
  • Fiser, A., Do, R. K., & Sali, A. (2000). Modeling of loops in protein structures. Protein Science , 9(9), 1753–1773. https://doi.org/10.1110/ps.9.9.1753
  • Fratev, F. (2020). The SARS-CoV-2 S1 spike protein mutation N501Y alters the protein interactions with both hACE2 and human derived antibody: A Free energy of perturbation study. bioRxiv, 2020.12.23.424283.
  • Galbadage, T., Peterson, B. M., Awada, J., Buck, A. S., Ramirez, D. A., Wilson, J., & Gunasekera, R. S. (2020). Systematic review and meta-analysis of sex-specific COVID-19 clinical outcomes. Frontiers in Medicine (Lausanne), 7, 315–348. https://doi.org/10.3389/fmed.2020.00348
  • Guarnera, E., & Berezovsky, I. N. (2019). Toward comprehensive allosteric control over protein activity. Structure (London, England : 1993), 27(5), 866–878.e1. https://doi.org/10.1016/j.str.2019.01.014
  • Huang, J., & MacKerell, A. D. Jr, (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Hussain, M., Jabeen, N., Raza, F., Shabbir, S., Baig, A. A., Amanullah, A., & Aziz, B. (2020). Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. Journal of Medical Virology, 92(9), 1580–1586. https://doi.org/10.1002/jmv.25832
  • Choi, R. Y., Farquhar, C., Juno, J., Mbori-Ngacha, D., Lohman-Payne, B., Vouriot, F., Wayne, S., Tuff, J., Bosire, R., John-Stewart, G., & Fowke, K. (2010). Infant CD 4 C 868 T polymorphism is associated with increased human immunodeficiency virus (HIV-1) acquisition. Clinical and Experimental Immunology, 160(3), 461–465. https://doi.org/10.1111/j.1365-2249.2010.04096.x
  • To, K. K. W., Zhou, J., Song, Y.-Q., Hung, I. F. N., Ip, W. C. T., Cheng, Z.-S., Chan, A. S. F., Kao, R. Y. T., Wu, A. K. L., Chau, S., Luk, W.-K., Ip, M. S. M., Chan, K.-H., & Yuen, K.-Y. (2014). Surfactant Protein B Gene Polymorphism Is Associated With Severe Infl uenza. Chest, 145(6), 1237–1243. https://doi.org/10.1378/chest.13-1651
  • Irani, A. H., Steyn-Ross, D. A., Steyn-Ross, M. L., Voss, L., & Sleigh, J. (2021). The molecular dynamics of possible inhibitors for SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2021.1942215
  • Kenney, A. D., Dowdle, J. A., Bozzacco, L., McMichael, T. M., St Gelais, C., Panfil, A. R., Sun, Y., Schlesinger, L. S., Anderson, M. Z., Green, P. L., López, C. B., Rosenberg, B. R., Wu, L., & Yount, J. S. (2017). Human genetic determinants of viral diseases. Annual Review of Genetics, 51, 241–263. https://doi.org/10.1146/annurev-genet-120116-023425
  • Kleffner, R., Flatten, J., Leaver-Fay, A., Baker, D., Siegel, J. B., Khatib, F., & Cooper, S. (2017). Foldit Standalone: A video game-derived protein structure manipulation interface using Rosetta. Bioinformatics (Oxford, England), 33(17), 2765–2767. https://doi.org/10.1093/bioinformatics/btx283
  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E. E., Bhattacharya, T., Foley, B., Hastie, K. M., Parker, M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I., Angyal, A., Brown, R. L., Carrilero, L., Green, L. R., Groves, D. C., Johnson, K. J., Keeley, A. J., Lindsey, B. B., Parsons, P. J., Raza, M., Rowland-Jones, S., Smith, N., Tucker, R. M., Wang, D., Wyles, M. D., McDanal, C., Perez, L. G., Tang, H., Moon-Walker, A., Whelan, S. P., LaBranche, C. C., Saphire, E. O., & Montefiori, D. C., Sheffield COVID-19 Genomics Group (2020). Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812–827.e19., https://doi.org/10.1016/j.cell.2020.06.043
  • Kumar, Y., Singh, H., & Patel, C. N. (2020). In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. Journal of Infection and Public Health, 13(9), 1210–1223. https://doi.org/10.1016/j.jiph.2020.06.016
  • Lafont, V., Armstrong, A. A., Ohtaka, H., Kiso, Y., Mario Amzel, L., & Freire, E. (2007). Compensating enthalpic and entropic changes hinder binding affinity optimization. Chemical Biology & Drug Design, 69(6), 413–422. https://doi.org/10.1111/j.1747-0285.2007.00519.x
  • Li, M. Y., Li, L., Zhang, Y., & Wang, X. S. (2020). Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infectious Diseases of Poverty, 9(1), 7. https://doi.org/10.1186/s40249-020-00662-x
  • McCallum, M., Bassi, J., De Marco, A., Chen, A., Walls, A. C., Di Iulio, J., Tortorici, M. A., Navarro, M.-J., Silacci-Fregni, C., Saliba, C., Sprouse, K. R., Agostini, M., Pinto, D., Culap, K., Bianchi, S., Jaconi, S., Cameroni, E., Bowen, J. E., Tilles, S. W., … Veesler, D. (2021). SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science eabi7994. Science (New York, N.Y.), 373(6555), 648–654. https://doi.org/10.1126/science.abi7994
  • McLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A., Flicek, P., & Cunningham, F. (2016). The ensembl variant effect predictor. Genome Biology, 17(1), 14. https://doi.org/10.1186/s13059-016-0974-4
  • Holmboe, M. (2020). Import and plot Gromacs.xvg data files [WWW Document]. Import and plot Gromacs.xvg data files.
  • Moutal, A., Martin, L., Boinon, L., Gomez, K., Ran, D., Zhou, Y., Stratton, H., Song, C., Luo, S., Gonzalez, K. B., Perez-Miller, S., Patwardhan, A., Ibrahim, M., & Khanna, R. (2021). SARS-CoV-2 spike protein hijacks VEGF-A/neuropilin-1 receptor signaling to induce analgesia, Pain. 162(1), 243-252. https://doi.org/10.1097/j.pain.0000000000002097.
  • Naganathan, A. N. (2019). Modulation of allosteric coupling by mutations: from protein dynamics and packing to altered native ensembles and function. Current Opinion in Structural Biology, 54, 1–9. https://doi.org/10.1016/j.sbi.2018.09.004
  • Nogales, A., & Dediego, M. L. (2019). Host single nucleotide polymorphisms modulating influenza a virus disease in humans. Pathogens. Pathogens, 8(4), 168. https://doi.org/10.3390/pathogens8040168
  • O’Driscoll, M., Dos Santos, G. R., Wang, L., Cummings, D. A. T., Azman, A. S., Paireau, J., Fontanet, A., Cauchemez, S., & Salje, H. (2021). Age-specific mortality and immunity patterns of SARS-CoV-2. Nature, 590(7844), 140–145. https://doi.org/10.1038/s41586-020-2918-0
  • Rollston, R., & Galea, S. (2020). COVID-19 and the social determinants of health. American Journal of Health Promotion : AJHP, 34(6), 687–689. https://doi.org/10.1177/0890117120930536b
  • Roy, U. (2021). Comparative structural analyses of selected spike protein-RBD mutations in SARS-CoV-2 lineages. Immunologic Research, 1, 3. https://doi.org/10.1007/s12026-021-09250-z
  • Schrödinger LLC. (2015). The {PyMOL} Molecular Graphics System. Version∼1.8.
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • Shastry, B. S. (2002). SNP alleles in human disease and evolution. Journal of Human Genetics, 47(11), 561–566. https://doi.org/10.1007/s100380200086
  • Singh, R., Bhardwaj, V. K., Sharma, J., Kumar, D., & Purohit, R. (2021). Identification of potential plant bioactive as SARS-CoV-2 Spike protein and human ACE2 fusion inhibitors. Computers in Biology and Medicine, 136, 104631. https://doi.org/10.1016/j.compbiomed.2021.104631
  • Song, Y., Dimaio, F., Wang, R. Y. R., Kim, D., Miles, C., Brunette, T., Thompson, J., & Baker, D. (2013). High-resolution comparative modeling with RosettaCM. Structure (London, England: 1993), 21(10), 1735–1742. https://doi.org/10.1016/j.str.2013.08.005
  • Sorokina, M., M. C., Teixeira, J., Barrera-Vilarmau, S., Paschke, R., Papasotiriou, I., Rodrigues, J. P. G. L. M., & Kastritis, P. L. (2020). Structural models of human ACE2 variants with SARS-CoV-2 Spike protein for structure-based drug design. Scientific Data, 7(1), 10. https://doi.org/10.1038/s41597-020-00652-6
  • Starr, T. N., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K. H. D., Dingens, A. S., Navarro, M. J., Bowen, J. E., Tortorici, M. A., Walls, A. C., King, N. P., Veesler, D., & Bloom, J. D. (2020). Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals Constraints on folding and ACE2 binding. Cell, 182(5), 1295–1310.e20. https://doi.org/10.1016/j.cell.2020.08.012
  • Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E. J., Msomi, N., Mlisana, K., von Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A. J., Engelbrecht, S., van Zyl, G., … de Oliveira, T. (2020). Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv 2, 1–19. https://doi.org/10.1101/2020.12.21.20248640
  • Vangone, A., & Bonvin, A. M. J. J. (2015). Contacts-based prediction of binding affinity in protein–protein complexes. eLife, 4, 1–15. https://doi.org/10.7554/eLife.07454
  • Wang, P., Casner, R. G., Nair, M. S., Wang, M., Yu, J., Cerutti, G., Liu, L., Kwong, P. D., Huang, Y., Shapiro, L., & Ho, D. D. (2021). Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host & Microbe, 29(5), 747–751.e4. https://doi.org/10.1016/j.chom.2021.04.007
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54, 5.6.1–5.6.37. https://doi.org/10.1002/cpbi.3
  • Weinkam, P., Chen, Y. C., Pons, J., & Sali, A. (2013). Impact of mutations on the allosteric conformational equilibrium. Journal of Molecular Biology, 425(3), 647–661. https://doi.org/10.1016/j.jmb.2012.11.041
  • WHO. (2021). COVID-19 Weekly Epidemiological Update. 35. World Health Organization. 1–3.
  • WHO | SARS-CoV-2 Variants. (n.d.). [WWW Document]. Retreived June 3, 2021 from https://www.who.int/csr/don/31-december-2020-sars-cov2-variants/en/.
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 367(6483), 1260–1263. https://doi.org/10.1126/science.aax0902
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yan, Y., Tao, H., He, J., & Huang, S.-Y. (2020). The HDOCK server for integrated protein-protein docking. Nature Protocols, 15(5), 1829–1852. https://doi.org/10.1038/s41596-020-0312-x
  • Yan, R., Zhang, Y., Guo, Y., Xia, L., & Zhou, Q. (2020a). Structural basis for the recognition of the 2019-nCoV by human ACE2 2762, 1–10. https://doi.org/10.1101/2020.02.19.956946
  • Yan, R., Zhang, Y., Guo, Y., Xia, L., & Zhou, Q. (2020b). Structural basis for the recognition of the 2019-nCoV by human ACE2 2762, 1–10. https://doi.org/10.1101/2020.02.19.956946
  • Zhang, J., Cai, Y., Xiao, T., Lu, J., Peng, H., Sterling, S. M., Walsh, R. M., Rits-Volloch, S., Zhu, H., Woosley, A. N., Yang, W., Sliz, P., & Chen, B., (2021). Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science. 372(6541):525-530. https://doi.org/10.1126/science.abf2303

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.