402
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Identification of new putative inhibitors of Mycobacterium tuberculosis 3-dehydroshikimate dehydratase from a combination of ligand- and structure-based and deep learning in silico approaches

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 2971-2980 | Received 07 Jan 2022, Accepted 10 Feb 2022, Published online: 23 Feb 2022

References

  • Amaro, R. E., Baudry, J., Chodera, J., Demir, Ö., McCammon, J. A., Miao, Y., & Smith, J. C. (2018). Ensemble docking in drug discovery. Biophysical Journal, 114(10), 2271–2278. https://doi.org/10.1016/j.bpj.2018.02.038
  • Baugh, L., Phan, I., Begley, D. W., Clifton, M. C., Armour, B., Dranow, D. M., Taylor, B. M., Muruthi, M. M., Abendroth, J., Fairman, J. W., Fox, D., Dieterich, S. H., Staker, B. L., Gardberg, A. S., Choi, R., Hewitt, S. N., Napuli, A. J., Myers, J., Barrett, L. K., … Myler, P. J. (2015). Increasing the structural coverage of tuberculosis drug targets. Tuberculosis, 95(2), 142–148. https://doi.org/10.1016/j.tube.2014.12.003
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Best, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & Mackerell, A. D. Jr, (2012). Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400x
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Das, P., Sercu, T., Wadhawan, K., Padhi, I., Gehrmann, S., Cipcigan, F., Chenthamarakshan, V., Strobelt, H., dos Santos, C., & Chen, P.-Y. (2021). Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nature Biomedical Engineering, 2021, 1–11. https://doi.org/10.1038/s41551-021-00689-x
  • Dias, M. V. B., Snee, W. C., Bromfield, K. M., Payne, R. J., Palaninathan, S. K., Ciulli, A., Howard, N. I., Abell, C., Sacchettini, J. C., & Blundell, T. L. (2011). Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of Mycobacterium tuberculosis. The Biochemical Journal, 436(3), 729–739. https://doi.org/10.1042/BJ20110002
  • Evans, L. D. B., Roszak, A. W., Noble, L. J., Robinson, D. A., Chalk, P. A., Matthews, J. L., Coggins, J. R., Price, N. C., & Lapthorn, A. J. (2002). Specificity of substrate recognition by type II dehydroquinases as revealed by binding of polyanions. FEBS Letters, 530(1–3), 24–30. https://doi.org/10.1016/S0014-5793(02)03346-X
  • Gourley, D. G., Shrive, A. K., Polikarpov, I., Krell, T., Coggins, J. R., Hawkins, A. R., Isaacs, N. W., & Sawyer, L. (1999). The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction. Nature Structural Biology, 6(6), 521–525. https://doi.org/10.1038/9287
  • Gowers, R., Linke, M., Barnoud, J., Reddy, T., Melo, M., Seyler, S., Domański, J., Dotson, D., Buchoux, S., & Kenney, I. (2016). MD analysis: A python package for the rapid analysis of molecular dynamics simulations. Proc. 15th Python Sci. Conf. https://doi.org/10.25080/Majora-629e541a-00e
  • Guilloux, V., Le; Le Guilloux, V., Schmidtke, P., & Tuffery, P. (2009). Fpocket: An open source platform for ligand pocket detection. BMC Bioinformatics, 10, 168. https://doi.org/10.1186/1471-2105-10-168
  • Huang, K., Fu, T., Glass, L. M., Zitnik, M., Xiao, C., & Sun, J. (2021). DeepPurpose: A deep learning library for drug–target interaction prediction. Bioinformatics (Oxford, England), 36(22–23), 5545–5547. https://doi.org/10.1093/bioinformatics/btaa1005
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Landrum, G. (2021). RDKit.
  • Lence, E., van der Kamp, M. W., González-Bello, C., & Mulholland, A. J. (2018). QM/MM simulations identify the determinants of catalytic activity differences between type II dehydroquinase enzymes. Organic & Biomolecular Chemistry, 16(24), 4443–4455. https://doi.org/10.1039/c8ob00066b
  • López-López, E., Naveja, J. J., & Medina-Franco, J. L. (2019). DataWarrior: An evaluation of the open-source drug discovery tool. Expert Opinion on Drug Discovery, 14(4), 335–341. https://doi.org/10.1080/17460441.2019.1581170
  • Macalino, S. J. Y., Billones, J. B., Organo, V. G., & Carrillo, M. C. O. (2020). In silico strategies in tuberculosis drug discovery. Molecules, 25(3), 665. https://doi.org/10.3390/molecules25030665
  • Pencheva, T., Lagorce, D., Pajeva, I., Villoutreix, B. O., & Miteva, M. A. (2008). AMMOS: Automated molecular mechanics optimization tool for in silico Screening. BMC Bioinformatics, 9, 438. https://doi.org/10.1186/1471-2105-9-438
  • Peón, A., Coderch, C., Gago, F., & González-Bello, C. (2013). Comparative binding energy COMBINE analysis for understanding the binding determinants of type II dehydroquinase inhibitors. ChemMedChem, 8(5), 740–747. https://doi.org/10.1002/cmdc.201300013
  • Peón, A., Otero, J. M., Tizón, L., Prazeres, V. F. V., Llamas-Saiz, A. L., Fox, G. C., van Raaij, M. J., Lamb, H., Hawkins, A. R., Gago, F., Castedo, L., & González-Bello, C. (2010). Understanding the key factors that control the inhibition of type II dehydroquinase by (2R)-2-benzyl-3-dehydroquinic acids. ChemMedChem, 5(10), 1726–1733. https://doi.org/10.1002/cmdc.201000281
  • Peón, A., Robles, A., Blanco, B., Convertino, M., Thompson, P., Hawkins, A. R., Caflisch, A., & González-Bello, C. (2017). Reducing the flexibility of type II dehydroquinase for inhibition: A fragment-based approach and molecular dynamics study. ChemMedChem, 12(18), 1512–1524. https://doi.org/10.1002/cmdc.201700396
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475
  • Rabahi, M. F., da Silva, J. L. R., Ferreira, A. C. G., Tannus-Silva, D. G. S., & Conde, M. B. (2017). Tuberculosis treatment. Jornal Brasileiro de Pneumologia: Pneumologia, 43(6), 472–486. https://doi.org/10.1590/s1806-37562016000000388
  • Sadowski, J., Gasteiger, J., & Klebe, G. (1994). Comparison of automatic three-dimensional model builders using 639 X-ray structures. Journal of Chemical Information and Computer Sciences, 34(4), 1000–1008. https://doi.org/10.1021/ci00020a039
  • Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626
  • Schneidman-Duhovny, D., Dror, O., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2008). PharmaGist: A webserver for ligand-based pharmacophore detection. Nucleic Acids Research, 36(Web Server issue), W223–W228. https://doi.org/10.1093/nar/gkn187
  • Singh, V., & Mizrahi, V. (2017). Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discovery Today, 22(3), 503–509. https://doi.org/10.1016/j.drudis.2016.09.010
  • Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., MacNair, C. R., French, S., Carfrae, L. A., Bloom-Ackermann, Z., Tran, V. M., Chiappino-Pepe, A., Badran, A. H., Andrews, I. W., Chory, E. J., Church, G. M., Brown, E. D., Jaakkola, T. S., Barzilay, R., & Collins, J. J. (2020). A deep learning approach to antibiotic discovery. Cell, 180(4), 688–702.e13. https://doi.org/10.1016/j.cell.2020.01.021
  • Sunseri, J., & Koes, D. R. (2016). Pharmit: Interactive exploration of chemical space. Nucleic Acids Research, 44(W1), W442–W448. https://doi.org/10.1093/nar/gkw287
  • Tizón, L., Otero, J. M., Prazeres, V. F. V., Llamas-Saiz, A. L., Fox, G. C., van Raaij, M. J., Lamb, H., Hawkins, A. R., Ainsa, J. A., Castedo, L., & González-Bello, C. (2011). A prodrug approach for improving antituberculosis activity of potent Mycobacterium tuberculosis type II dehydroquinase inhibitors. Journal of Medicinal Chemistry, 54(17), 6063–6084. https://doi.org/10.1021/jm2006063
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Wallace, A. C., Laskowski, R. A., & Thornton, J. M. (1995). LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Engineering, 8(2), 127–134. https://doi.org/10.1093/protein/8.2.127
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(Database issue), D668–D672. https://doi.org/10.1093/nar/gkj067
  • World Health Organization. (2020). Global Tuberculosis Report 2020. ISBN 978-92-4-001313-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.