152
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Inhibitory mechanism of clioquinol and its derivatives at the exopeptidase site of human angiotensin-converting enzyme-2 and receptor binding domain of SARS-CoV-2 viral spike

, , , , &
Pages 2992-3001 | Received 12 Sep 2021, Accepted 14 Feb 2022, Published online: 26 Feb 2022

References

  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry, 9, 661230. https://doi.org/10.3389/fchem.2021.661230
  • Basconi, J. E., & Shirts, M. R. (2013). Effects of temperature control algorithms on transport properties and kinetics in molecular dynamics simulations. Journal of Chemical Theory and Computation, 9(7), 2887–2899. https://doi.org/10.1021/ct400109a
  • Basu, A., Sarkar, A., & Maulik, U. (2020). Computational approach for the design of potential spike protein binding natural compounds in SARS- CoV2. Pharmacodynamics, 4, 1–22. https://doi.org/10.21203/rs.3.rs-33181/v1.
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure & Dynamics, 39(10), 3449–3458. https://doi.org/10.1080/07391102.2020.1766572
  • Bhardwaj, V. K., Singh, R., Das, P., & Purohit, R. (2021). Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine, 128, 104117. https://doi.org/10.1016/j.compbiomed.2020.104117
  • Case, D. A, Aktulga, H. M., K., Belfon, I. Y., Ben-Shalom, S. R., Brozell, D. S., Cerutti, T. E., Cheatham, Iii, G. A., Cisneros, V. W. D., Cruzeiro, T. A., Darden, R. E., Duke, G., Giambasu, M. K., Gilson, H., Gohlke, A. W., Goetz, R., Harris, S., Izadi, S. A., Izmailov, C., Jin, K., Kasavajhala, M. C., Kaymak, E., King, A., Kovalenko, T., Kurtzman, T. S., Lee, S., LeGrand, P., Li, C., Lin, J., Liu, T., Luchko, R., Luo, M., Machado, V., Man, M., Manathunga, K. M., Merz, Y., Miao, O., Mikhailovskii, G., Monard, H., Nguyen, K. A., O’Hearn, A., Onufriev, F., Pan, S., Pantano, R., Qi, A., Rahnamoun, D. R., Roe, A., Roitberg, C., Sagui, S., Schott-Verdugo, J., Shen, C. L., Simmerling, N. R., Skrynnikov, J., Smith, J., Swails, R. C., Walker, J., Wang, H., Wei, R. M., Wolf, X., Wu, Y., Xue, D. M., York, S., Zhao, P. A. & Kollman, (2021). Amber 2021. University of California.
  • Chan, J. F. W., Kok, K. H., Zhu, Z., Chu, H., To, K. K. W., Yuan, S., & Yuen, K. Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221–236. https://doi.org/10.1080/22221751.2020.1719902
  • Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R. E., & Acton, S. (2000). A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research, 87 (5), e1–e9. https://doi.org/10.1161/01.RES.87.5.e1.
  • Emmanuel, I. A., Olotu, F., Agoni, C., & Soliman, M. E. (2019). Broadening the horizon: Integrative pharmacophore-based and cheminformatics screening of novel chemical modulators of mitochondria ATP synthase towards interventive Alzheimer's disease therapy. Medical Hypotheses, 130, 109277. https://doi.org/10.1016/j.mehy.2019.109277
  • Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. In Coronaviruses: Methods and Protocols (Vol. 1282, pp. 1–23). Springer. https://doi.org/10.1007/978-1-4939-2438-7_1.
  • Gonnet, P. (2007). P-SHAKE: A quadratically convergent SHAKE in O(n2). Journal of Computational Physics, 220(2), 740–750. https://doi.org/10.1016/j.jcp.2006.05.032
  • Gorbalenya, A. E., Baker, S. C., Baric, R. S., de Groot, R. J., Drosten, C., Gulyaeva, A. A., Haagmans, B. L., Lauber, C., Leontovich, A. M., & Neuman, B. W. (2020). The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology., 5, 536–544.
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeerschd, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(8), 1–17.
  • Hikmet, F., Méar, L., Edvinsson, Å., Micke, P., Uhlén, M., & Lindskog, C. (2020). The protein expression profile of ACE2 in human tissues. Molecular Systems Biology, 16(7), 1-16. https://doi.org/10.15252/msb.20209610
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280. https://doi.org/10.1016/j.cell.2020.02.052
  • Hoffmann, M., Schroeder, S., Kleine-Weber, H., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020a). Nafamostat mesylate blocks activation of SARS-CoV-2: New treatment option for COVID-19. Antimicrobial Agents and Chemotherapy, 64(6), e00754–20. https://doi.org/10.1128/AAC.00754-20.
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. The Journal of Chemical Physics, 114(5), 2090–2098. https://doi.org/10.1063/1.1332996
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kehinde, I., Ramharack, P., Nlooto, M., & Gordon, M. (2019). The pharmacokinetic properties of HIV-1 protease inhibitors: A computational perspective on herbal phytochemicals. Heliyon, 5(10), e02565. https://doi.org/10.1016/j.heliyon.2019.e02565
  • Kumar, C. V., Swetha, R. G., Anbarasu, A., & Ramaiah, S. (2014). Computational analysis reveals the association of threonine 118 methionine mutation in PMP22 resulting in CMT-1A. Advances in Bioinformatics, 2014, 1–10. https://doi.org/10.1155/2014/502618
  • Markus, D., Gottfried, L., M. M., Marina, R., Dario, B., D., & de, V. (2020). “A SARS-CoV-2 Prophylactic and Treatment; A Counter Argument against the Sole Use of Chloroquine, 8(4),1-4. AJBSR.MS.ID.001283. https://doi.org/10.34297/AJBSR.2020.08.001283.
  • Maurya, V. K., Kumar, S., Bhatt, M. L. B., & Saxena, S. K. (2020). Therapeutic development and drugs for the treatment of COVID-19. Nature Public Health Emergency Collection, 1, 109–126. https://doi.org/10.1007/978-981-15-4814-7_10.
  • Montopoli, M., Zumerle, S., Vettor, R., Rugge, M., Zorzi, M., Catapano, C. V., Carbone, G. M., Cavalli, A., Pagano, F., Ragazzi, E., Prayer-Galetti, T., & Alimonti, A. (2020). Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: A population-based study (N= 4532). Annals of Oncology, 31(8), 1040–1045. https://doi.org/10.1016/j.annonc.2020.04.479
  • Nair, P. C., & Miners, J. O. (2014). Molecular dynamics simulations: From structure function relationships to drug discovery. Silico Pharm, 2(1), 1–4. https://doi.org/10.1186/s40203-014-0004-8.
  • Nami, B., Ghanaiyan, A., Ghanaeian, K., & Nami, N., (2020). The effect of ACE2 inhibitor MLN-4760 on the interaction of SARS-CoV-2 spike protein with human ACE2: A molecular dynamics study. ChemRxiv, 1, 4-16. https://doi.org/10.26434/chemrxiv.12159945.
  • Obakachi, V. A., Kushwaha, N. D., Kushwaha, B., Mahlalela, M. C., Shinde, S. R., Kehinde, I., & Karpoormath, R. (2021). Design and synthesis of pyrazolone-based compounds as potent blockers of SARS-CoV-2 viral entry into the host cells. Journal of Molecular Structure, 1241, 130665. https://doi.org/10.1016/j.molstruc.2021.130665
  • Ogidigo, J. O., Iwuchukwu, E. A., Ibeji, C. U., Okpalefe, O., & Soliman, M. E. S. (2020). Natural phyto, compounds as possible noncovalent inhibitors against SARS-CoV2 protease: Computational approach. Journal of Biomolecular Structure and Dynamics, 2, 1–18. https://doi.org/10.1080/07391102.2020.1837681
  • Olaleye, O. A., Kaur, M., Onyenaka, C., & Adebusuyi, T. (2021). Discovery of Clioquinol and analogues as novel inhibitors of severe acute respiratory syndrome coronavirus 2 infection, ACE2 and ACE2 – Spike protein interaction in vitro. Heliyon, 7(3), e06426. https://doi.org/10.1016/j.heliyon.2021.e06426
  • Rohde, W., Mikelens, P., Jackson, J., Blackman, J., Whitcher, J., & Levinson, W. (1976). Hydroxyquinolines inhibit ribonucleic acid-dependent deoxyribonucleic acid polymerase and inactivate Rous sarcoma virus and herpes simplex virus. Antimicrobial Agents and Chemotherapy , 10 (2), 234–240. https://doi.org/10.1128/aac.10.2.234
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Seifert, E. (2014). OriginPro 9.1: Scientific data analysis and graphing software-software review. Journal of Chemical Information and Modeling, 54(5), 1552–1552. https://doi.org/10.1021/ci500161d
  • Senathilake, K., Samarakoon, S., & Tennekoon, K. (2020). Virtual screening of inhibitors against spike glycoprotein of 2019 novel corona virus: A drug repurposing approach. https://doi.org/10.20944/preprints202003.0042.v1.
  • Sharma, J., Kumar Bhardwaj, V., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2021). An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933.
  • Shode, F. O., Idowu, A., Uhomoibhi, O. J., & Sabiu, S. (2021). Repurposing drugs and identification of inhibitors of integral proteins (spike protein and main protease) of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1, 1–16. Advance online publication. https://doi.org/10.1080/07391102.2021.1886993
  • Singh, R., Bhardwaj, V. K., Sharma, J., Purohit, R., & Kumar, S. (2021). In-silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. Journal of Traditional and Complementary Medicine, 2. https://doi.org/10.1016/j.jtcme.2021.05.005.
  • Teli, D. M., Shah, M. B., & Chhabria, M. T. (2020). In silico screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and spike RBD: Targets for COVID-19. Frontiers in Molecular Biosciences, 7, 599079. https://doi.org/10.3389/fmolb.2020.599079
  • Towler, P., Staker, B., Prasad, S. G., Menon, S., Tang, J., Parsons, T., Ryan, D., Fisher, M., Williams, D., Dales, N. A., Patane, M. A., & Pantoliano, M. W. (2004). ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. Journal of Biological Chemistry, 279(17), 17996–18007. https://doi.org/10.1074/jbc.M311191200
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 455–461.
  • Unni, S., Aouti, S., Thiyagarajan, S., & Padmanabhan, B. (2020). Identification of a repurposed drug as an inhibitor of Spike protein of human coronavirus SARS-CoV-2 by computational methods. Journal of Biosciences, 45(1), 130. https://doi.org/10.1007/s12038-020-00102-w
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904.e9. https://doi.org/10.1016/j.cell.2020.03.045
  • Xu, J., Zhao, S., Teng, T., Abdalla, A. E., Zhu, W., Xie, L., Wang, Y., & Guo, X. (2020). Systematic comparison of two animal-to-human transmitted human coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 12(2), 244. https://doi.org/10.3390/v12020244
  • Yamamoto, M., Kiso, M., Sakai-Tagawa, Y., Iwatsuki-Horimoto, K., Imai, M., Takeda, M., Kinoshita, N., Ohmagari, N., Gohda, J., Semba, K., Matsuda, Z., Kawaguchi, Y., Kawaoka, Y., & Inoue, J. I. (2020). The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses, 12(6), 629. https://doi.org/10.3390/v12060629
  • Yang, Z., Lasker, K., Schneidman-Duhovny, D., Webb, B., Huang, C. C., Pettersen, E. F., Goddard, T. D., Meng, E. C., Sali, A., & Ferrin, T. E. (2012). UCSF chimera, MODELLER, and IMP: An integrated modeling system. Journal of Structural Biology, 179(3), 269–278. https://doi.org/10.1016/j.jsb.2011.09.006
  • Ylilauri, M., & Pentikäinen, O. T. (2013). MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. Journal of Chemical Information and Modeling, 53(10), 2626–2633. https://doi.org/10.1021/ci4002475
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 588(7836), 270–273. https://doi.org/10.1038/s41586-020-2951-z

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.