208
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Single-walled silicon nanotube as an exceptional candidate to eliminate SARS-CoV-2: a theoretical study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3042-3051 | Received 30 Nov 2021, Accepted 17 Feb 2022, Published online: 26 Feb 2022

References

  • Aasi, A., Aghaei, S. M., Moore, M. D., & Panchapakesan, B. (2020). Pt-, rh-, ru-, and cu-single-wall carbon nanotubes are exceptional candidates for design of anti-viral surfaces: A theoretical study. International Journal of Molecular Sciences, 21(15), 5211–5223. https://doi.org/10.3390/ijms21155211
  • Allouche, A. (2011). Software news and updates Gabedit—A graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1), 174–182. https://doi.org/10.1002/jcc https://doi.org/10.1002/jcc.21600
  • Antônio Pinheiro Lobo, J., Rodrigues dos Santos, J., Vital de Oliveira, O., Longo da Silva, E., & Divino dos Santos, J. (2020). Theoretical study of greenhouse gases on the zirconium oxide nanotube surface. Chemical Physics Letters, 745(February), 137236. https://doi.org/10.1016/j.cplett.2020.137236
  • Assis, M., Simoes, L. G. P., Tremiliosi, G. C., Coelho, D., Minozzi, D. T., Santos, R. I., Vilela, D. C. B., Santos, J. R., Do Ribeiro, L. K., Rosa, I. L. V., Mascaro, L. H., Andrés, J., & Longo, E. (2021). Sio2-ag composite as a highly virucidal material: A roadmap that rapidly eliminates sars-cov-2. Nanomaterials, 11(3), 19–1.   https://doi.org/10.3390/nano11030638
  • Assis, M., Simoes, L. G. P., Tremiliosi, G. C., Ribeiro, L. K., Coelho, D., Minozzi, D. T., Santos, R. I., Vilela, D. C. B., Mascaro, L. H., Andrés, J., & Longo, E. (2021). PVC-SiO2-Ag composite as a powerful biocide and anti-SARS-CoV-2 material. Journal of Polymer Research, 28(9), 7-1. https://doi.org/10.1007/s10965-021-02729-1
  • Bai, J., Zeng, X. C., Tanaka, H., & Zeng, J. Y. (2004). Metallic single-walled silicon nanotubes. 2003, 2668–2664.
  • Berger, S., Faltenbacher, J., Bauer, S., & Schmuki, P. (2008). Enhanced self-ordering of anodic ZrO2 nanotubes in inorganic and organic electrolytes using two-step anodization. Physica Status Solidi (RRL) – Rapid Research Letters, 2(3), 102–104. https://doi.org/10.1002/pssr.200802019
  • Burwell, R. L. (1966). The mechanism of heterogeneous catalysis. Chemical & Engineering News Archive, 44(34), 56–67. https://doi.org/10.1021/cen-v044n034.p056
  • Camilli, L., & Passacantando, M. (2018). Advances on sensors based on carbon nanotubes. Chemosensors, 6(4), 17–1.   https://doi.org/10.3390/chemosensors6040062
  • Castrucci, P., Scarselli, M., De Crescenzi, M., Diociaiuti, M., Chaudhari, P. S., Balasubramanian, C., Bhave, T. M., & Bhoraskar, S. V. (2006). Silicon nanotubes: Synthesis and characterization. Thin Solid Films., 508(1–2), 226–230. https://doi.org/10.1016/j.tsf.2005.07.348
  • Costero, A. M., Royo, S., Martínez-Máñez, R., Gil, S., Parra, M., & Sancenón, F. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, 46(46), 4839. https://doi.org/10.1039/b707063b
  • De Crescenzi, M., Castrucci, P., Scarselli, M., Diociaiuti, M., Chaudhari, P. S., Balasubramanian, C., Bhave, T. M., & Bhoraskar, S. V. (2005). Experimental imaging of silicon nanotubes. Applied Physics Letters, 86(23), 231901–231903. https://doi.org/10.1063/1.1943497
  • De Las Casas, C., & Li, W. (2012). A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources, 208, 74–85. https://doi.org/10.1016/j.jpowsour.2012.02.013
  • Dobbs, K. D., & Hehre, W. J. (1986). Molecular orbital theory of the properties of inorganic and organometallic compounds 4. Extended basis sets for third‐and fourth‐row, main‐group elements. Journal of Computational Chemistry, 7(3), 359–378. https://doi.org/10.1002/jcc.540070313
  • dos Santos, J. R., da Silva, E. L., de Oliveira, O. V., & dos Santos, J. D. (2020). Theoretical study of sarin adsorption on (12,0) boron nitride nanotube doped with silicon atoms. Chemical Physics Letters, 738(October), 136816. https://doi.org/10.1016/j.cplett.2019.136816
  • Fagan, S. B., Baierle, R., Mota, R., da Silva, A. J. R., & Fazzio, A. (2000). Ab initio calculations for a hypothetical material: Silicon nanotubes. Physical Review B, 61(15), 9994–9996. https://doi.org/10.1103/PhysRevB.61.9994
  • Frisch,M. J., Caminhoes, G. W., Shlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricoto, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., ... Fox, D. J., (2009). Gaussian09, Revisão E.01, Gaussian, Inc., Wallingford CT.
  • Glendening, E. D., Landis, C. R., & Weinhold, F. (2012). Natural bond orbital methods. WIREs Computational Molecular Science, 2(1), 1–42. https://doi.org/10.1002/wcms.51
  • Gligorovski, S., Strekowski, R., Barbati, S., & Vione, D. (2015). Environmental Implications of Hydroxyl Radicals ((•)OH)). Chemical Reviews, 115(24), 13051–13092. https://doi.org/10.1021/cr500310b
  • Golberg, D., Bando, Y., Tang, C. C., & Zhi, C. Y. (2007). Boron nitride nanotubes. Advanced Materials, 19(18), 2413–2432. https://doi.org/10.1002/adma.200700179
  • González-Durruthy, M., Werhli, A. V., Seus, V., Machado, K. S., Pazos, A., Munteanu, C. R., González-Díaz, H., & Monserrat, J. M. (2017). Decrypting strong and weak single-walled carbon nanotubes interactions with mitochondrial voltage-dependent anion channels using molecular docking and perturbation theory. Scientific Reports, 7(1), 1–19. https://doi.org/10.1038/s41598-017-13691-8
  • Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Journal of Chemical Physics, (15), 18-1. https://doi.org/10.1063/1.3382344
  • Han, T., Nag, A., Chandra Mukhopadhyay, S., & Xu, Y. (2019). Carbon nanotubes and its gas-sensing applications: A review. Sensors and Actuators A: Physical, 291, 107–143. https://doi.org/10.1016/j.sna.2019.03.053
  • Hayyan, M., Hashim, M. A., & Alnashef, I. M. (2016). Superoxide ion: Generation and chemical implications. Chemical Reviews, 116(5), 3029–3085. https://doi.org/10.1021/acs.chemrev.5b00407
  • Hirana, Y., Juhasz, G., Miyauchi, Y., Mouri, S., Matsuda, K., & Nakashima, N. (2013). Empirical prediction of electronic potentials of single-walled carbon nanotubes with a specific chirality (n,m). Scientific Reports, 3, 6–1.   https://doi.org/10.1038/srep02959
  • Honda, H., Ishizaki, A., Soma, R., Hashimoto, K., & Fujishima, A. (1998). Application of photocatalytic reactions caused by tio2 film to improve the maintenance factor of lighting systems. Journal of the Illuminating Engineering Society, 27(1), 42–49. https://doi.org/10.1080/00994480.1998.10748209
  • Hu, D., Zhu, C., Ai, L., He, T., Wang, Y., Ye, F., Yang, L., Ding, C., Zhu, X., Lv, R., Zhu, J., Hassan, B., Feng, Y., Tan, W., & Wang, C. (2018). Genomic characterization and infectivity of a novel SARS-like coronavirus in Chinese bats. Emerging Microbes & Infections, 7(1), 1–10. https://doi.org/10.1038/s41426-018-0155-5
  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56–740. https://doi.org/10.1038/354056a0
  • Stewart, J. J. (1990). MOPAC: A semiempirical molecular orbital program. Journal of Computer-Aided Molecular Design, 4(1), 1–105.
  • Jeong, S. Y., Kim, J. Y., Yang, H. D., Yoon, B. N., Choi, S. H., Kang, H. K., Yang, C. W., & Lee, Y. H. (2003). Synthesis of silicon nanotubes on porous alumina using molecular beam epitaxy. Advanced Materials, 15(14), 1172–1176. https://doi.org/10.1002/adma.200304898
  • Jitianu, A., Cacciaguerra, T., Benoit, R., Delpeux, S., Béguin, F., & Bonnamy, S. (2004). Synthesis and characterization of carbon nanotubes-TiO2 nanocomposites. Carbon, 42(5-6), 1147–1151. https://doi.org/10.1016/j.carbon.2003.12.041
  • Kampf, G., Todt, D., Pfaender, S., & Steinmann, E. (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. The Journal of Hospital Infection, 104(3), 246–251. https://doi.org/10.1016/j.jhin.2020.01.022
  • Kearns, D. R. (1971). Physical and chemical properties of singlet molecular oxygen. Chemical Reviews, 71(4), 395–427. https://doi.org/10.1021/cr60272a004
  • Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1(1–6), 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Larsen, J. R., Martin, M. R., Martin, J. D., Kuhn, P., & Hicks, J. B. (2020). Modeling the onset of symptoms of COVID-19. Frontiers in Public Health, 8(August), 473. https://doi.org/10.3389/fpubh.2020.00473
  • Lissi, E. A., Encinas, M. V., Lemp, E., & Rubio, M. A. (1993). Singlet oxygen O2(1Δg) bimolecular processes. Solvent and compartmentalization effects. Chemical Reviews, 93(2), 699–723. https://doi.org/10.1021/cr00018a004
  • Lu, N., Sui, Y., Ding, Y., Tian, R., & Peng, Y. Y. (2018). Fibrinogen binding-dependent cytotoxicity and degradation of single-walled carbon nanotubes. Journal of Materials Science: Materials in Medicine, 29(8), 9–13. https://doi.org/10.1007/s10856-018-6123-8
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Ma, J., Ping, D., & Dong, X. (2017). Recent developments of graphene oxide-based membranes: A review. Membranes, 7(3), 52. https://doi.org/10.3390/membranes7030052
  • Mahdavifar, Z., Abbasi, N., & Shakerzadeh, E. (2013). A comparative theoretical study of CO2 sensing using inorganic AlN, BN and SiC single walled nanotubes. Sensors and Actuators B: Chemical, 185, 512–522. https://doi.org/10.1016/j.snb.2013.05.004
  • Nosaka, Y., & Nosaka, A. (2016). Understanding hydroxyl radical (•OH) generation processes in photocatalysis. ACS Energy Letters, 1(2), 356–359. https://doi.org/10.1021/acsenergylett.6b00174
  • Nosaka, Y., & Nosaka, A. Y. (2017). Generation and detection of reactive oxygen species in photocatalysis. Chemical Reviews, 117(17), 11302–11336. https://doi.org/10.1021/acs.chemrev.7b00161
  • Patel, S., Srivastav, A. K., Gupta, S. K., Kumar, U., Mahapatra, S. K., Gajjar, P. N., & Banerjee, I. (2021). Carbon nanotubes for rapid capturing of SARS-COV-2 virus: Revealing a mechanistic aspect of binding based on computational studies. RSC Advances, 11(10), 5785–5800. https://doi.org/10.1039/D0RA08888A
  • Pitt, I. G., Gilbert, R. G., & Ryan, K. R. (1994). Application of transition-state theory to gas-surface reactions: Barrierless adsorption on clean surfaces. The Journal of Physical Chemistry, 98(49), 13001–13010. https://doi.org/10.1021/j100100a031
  • Planeix, J. M., Coustel, N., Coq, B., Brotons, V., Kumbhar, P. S., Dutartre, R., Geneste, P., Bernier, P., & Ajayan, P. M. (1994). Application of carbon nanotubes as supports in heterogeneous catalysis. Journal of the American Chemical Society, 116(17), 7935–7936. https://doi.org/10.1021/ja00096a076
  • Pokatilov, E. P., Nika, D. L., & Balandin, A. A. (2005). Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers. Physical Review B, 72(11), 4–7. https://doi.org/10.1103/PhysRevB.72.113311
  • Rassolov, V. A., Ratner, M. A., Pople, J. A., Redfern, P. C., & Curtiss, L. A. (2001). 6-31G* basis set for third-row atoms. Journal of Computational Chemistry, 22(9), 976–984. https://doi.org/10.1002/jcc.1058
  • Röthlisberger, U., Andreoni, W., & Parrinello, M. (1994). Structure of nanoscale silicon clusters. Physical Review Letters, 72(5), 665–668. https://doi.org/10.1103/PhysRevLett.72.665
  • Sadan, M. B., Houben, L., Enyashin, A. N., Seifert, G., & Tenne, R. (2008). Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures. Proceedings of the National Academy of Sciences of the United States of America, 105(41), 15643–15648. https://doi.org/10.1073/pnas.0805407105
  • Sander, T., Freyss, J., Von Korff, M., & Rufener, C. (2015). DataWarrior: An open-source program for chemistry aware data visualization and analysis. Journal of Chemical Information and Modeling, 55(2), 460–473. https://doi.org/10.1021/ci500588j
  • Seifert, G., Köhler, T., Hajnal, Z., & Frauenheim, T. (2001). Tubular structures of germanium. Solid State Communications, 119(12), 653–657. https://doi.org/10.1016/S0038-1098(01)00309-X
  • Serra, M., Arenal, R., & Tenne, R. (2019). An overview of the recent advances in inorganic nanotubes. Nanoscale, 11(17), 8073–8090. https://doi.org/10.1039/c9nr01880h
  • Shah, M., Ahmad, B., Choi, S., & Woo, H. G. (2020). Sequence variation of SARS-CoV-2 spike protein may facilitate stronger interaction with ACE2 promoting high infectivity. Research Square, 23-1. https://doi.org/10.21203/rs.3.rs-16932/v1
  • Sharafeldin, I. M., & Allam, N. K. (2017). DFT insights into the electronic properties and adsorption of NO2 on metal-doped carbon nanotubes for gas sensing applications. New Journal of Chemistry, 41(24), 14936–14944. https://doi.org/10.1039/C7NJ03109B
  • Solimannejad, M., & Noormohammadbeigi, M. (2017). Boron nitride nanotube (BNNT) as a sensor of hydroperoxyl radical (HO2): A DFT study. Journal of the Iranian Chemical Society, 14(2), 471–476. https://doi.org/10.1007/s13738-016-0994-8
  • Soltani, A., Peyghan, A. A., & Bagheri, Z. (2013). H2O2 adsorption on the BN and SiC nanotubes: A DFT study. Physica E: Low-Dimensional Systems and Nanostructures, 48, 176–180. https://doi.org/10.1016/j.physe.2013.01.007
  • Song, T., Xia, J., Lee, J. H., Lee, D. H., Kwon, M. S., Choi, J. M., Wu, J., Doo, S. K., Chang, H., Park, W., II, Zang, D. S., Kim, H., Huang, Y., Hwang, K. C., Rogers, J. A., & Paik, U. (2010). Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Letters, 10(5), 1710–1716. https://doi.org/10.1021/nl100086e
  • Stewart, J. J. P. (2013). Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, 19(1), 1–32. https://doi.org/10.1007/s00894-012-1667-x
  • Uemoto, M., Kuwabara, Y., Sato, S. A., & Yabana, K. (2019). Nonlinear polarization evolution using time-dependent density functional theory. Journal of Chemical Physics, 150(9), 11-1. https://doi.org/10.1063/1.5068711
  • Wang, R., Xie, L., Hameed, S., Wang, C., & Ying, Y. (2018). Mechanisms and applications of carbon nanotubes in terahertz devices: A review. Carbon, 132, 42–58. https://doi.org/10.1016/j.carbon.2018.02.005
  • Wolfe, N. D., Dunavan, C. P., & Diamond, J. (2007). Origins of major human infectious diseases. Nature, 447(7142), 279–283. https://doi.org/10.1038/nature05775
  • Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C., & Zhang, Y. Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Yang, B., Chen, Y., & Shi, J. (2019). Reactive oxygen species (ROS)-based nanomedicine. Chemical Reviews, 119(8), 4881–4985. https://doi.org/10.1021/acs.chemrev.8b00626
  • Yang, X., & Ni, J. (2005). Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes. Physical Review B, 72(19), 1–5. https://doi.org/10.1103/PhysRevB.72.195426
  • Yoo, J. K., Kim, J., Jung, Y. S., & Kang, K. (2012). Scalable fabrication of silicon nanotubes and their application to energy storage. Advanced Materials (Deerfield Beach, Fla.), 24(40), 5452–5456. https://doi.org/10.1002/adma.201201601
  • Zhang, W., Zhang, Z., & Zhang, Y. (2011). The application of carbon nanotubes in target drug delivery systems for cancer therapies. Nanoscale Research Letters, 6(1), 1–22. https://doi.org/10.1186/1556-27 https://doi.org/10.1186/1556-276X-6-555

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.