185
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Vitamin B12 binding to mutated human transcobalamin, in-silico study of TCN2 alanine scanning and ClinVar missense mutations/SNPs

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3222-3233 | Received 30 Oct 2021, Accepted 20 Feb 2022, Published online: 09 Mar 2022

References

  • Afman, L. A., Lievers, K. J., van der Put, N. M., Trijbels, F. J., & Blom, H. J. (2002). Single nucleotide polymorphisms in the transcobalamin gene: Relationship with transcobalamin concentrations and risk for neural tube defects. European Journal of Human Genetics : EJHG, 10(7), 433–438. https://doi.org/10.1038/sj.ejhg.5200830
  • Alam, A., Woo, J.-S., Schmitz, J., Prinz, B., Root, K., Chen, F., Bloch, J. S., Zenobi, R., & Locher, K. P. (2016). Structural basis of transcobalamin recognition by human CD320 receptor. Nature Communications, 7, 12100. https://doi.org/10.1038/ncomms12100
  • Allen, R. H., & Majerus, P. W. (1972). Isolation of vitamin B12-binding proteins using affinity chromatography. 3. Purification and properties of human plasma transcobalamin II. The Journal of Biological Chemistry, 247(23), 7709–7717.
  • Anand, P., Nagarajan, D., Mukherjee, S., & Chandra, N. (2014). ABS-Scan: In silico alanine scanning mutagenesis for binding site residues in protein-ligand complex. F1000Research, 3, 214. https://doi.org/10.12688/f1000research.5165.1
  • Arora, K., Sequeira, J. M., Hernandez, A. I., Alarcon, J. M., & Quadros, E. V. (2017). Behavioral alterations are associated with vitamin B12 deficiency in the transcobalamin receptor/CD320 KO mouse. PLoS One, 12(5), e0177156. https://doi.org/10.1371/journal.pone.0177156
  • Bosco, P., Gueant-Rodriguez, R. M., Anello, G., Spada, R., Romano, A., & Fajardo, A. (2006). Association of homocysteine (but not of MTHFR 677 C > T, MTR 2756 A > G, MTRR 66 A > G and TCN2 776 C > G) with ischaemic cerebrovascular disease in Sicily. Thromb Haemost, 96(2), 154–159.
  • Castro, R., Barroso, M., Rocha, M., Esse, R., Ramos, R., Ravasco, P., Rivera, I., & de Almeida, I. T. (2010). The TCN2 776CNG polymorphism correlates with vitamin B(12) cellular delivery in healthy adult populations. Clinical Biochemistry, 43(7–8), 645–649. https://doi.org/10.1016/j.clinbiochem.2010.01.015
  • Fedosov, S. N., Fedosova, N. U., Nexo, E., & Petersen, T. E. (2000). Conformational changes of transcobalamin induced by aquocobalamin binding. Mechanism of substitution of the cobalt-coordinated group in the bound ligand. The Journal of Biological Chemistry, 275(16), 11791–11798. https://doi.org/10.1074/jbc.275.16.11791
  • Födinger, M., Veitl, M., Skoupy, S., Wojcik, J., Röhrer, C., Hagen, W., Puttinger, H., Hauser, A.-C., Vychytil, A., & Sunder-Plassmann, G. (2003). Effect of TCN2 776C > G on vitamin B12 cellular availability in end-stage renal disease patients. Kidney International, 64(3), 1095–1100. https://doi.org/10.1046/j.1523-1755.2003.00173.x
  • Green, R., Allen, L. H., Bjørke-Monsen, A.-L., Brito, A., Guéant, J.-L., Miller, J. W., Molloy, A. M., Nexo, E., Stabler, S., Toh, B.-H., Ueland, P. M., & Yajnik, C. (2017). Vitamin B12 deficiency. Nature Reviews Disease Primers, 3, 17040. https://doi.org/10.1038/nrdp.2017.40
  • Gueant, J.-L., Chabi, N. W., Gueant-Rodriguez, R.-M., Mutchinick, O. M., Debard, R., Payet, C., Lu, X., Villaume, C., Bronowicki, J.-P., Quadros, E. V., Sanni, A., Amouzou, E., Xia, B., Chen, M., Anello, G., Bosco, P., Romano, C., Arrieta, H. R., Sanchez, B. E., … Namour, F. (2007). Environmental influence on the worldwide prevalence of a 776C->G variant in the transcobalamin gene (TCN2). Journal of Medical Genetics, 44(6), 363–367. https://doi.org/10.1136/jmg.2006.048041
  • Hall, C. A., & Finkler, A. E. (1966). Function of transcobalamin II: A B-12 binding protein in human plasma. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, N.Y.), 123(1), 55–58. https://doi.org/10.3181/00379727-123-31400
  • Kalra, S., Li, N., Seetharam, S., Alpers, D. H., & Seetharam, B. (2003). Function and stability of human transcobalamin II: Role of intramolecular disulfide bonds C98-C291 and C147-C187. American Journal of Physiology Cell Physiology, 285(1), C150–60. https://doi.org/10.1152/ajpcell.00496.2002
  • Kalra, S., Li, N., Yammani, R. R., Seetharam, S., & Seetharam, B. (2004). Cobalamin (vitamin B12) binding, phylogeny, and synteny of human transcobalamin. Archives of Biochemistry and Biophysics, 431(2), 189–196. https://doi.org/10.1016/j.abb.2004.08.011
  • Keller, P., Rufener, J., Schild, C., Fedosov, S. N., Nissen, P. H., & Nexo, E. (2016). False low holotranscobalamin levels in a patient with a novel TCN2 mutation. Clinical Chemistry and Laboratory Medicine, 54(11), 1739–1743.
  • Kim, H. S., Lee, B. E., Jeon, Y. J., Rah, H., Lee, W. S., Shin, J. E., Choi, D. H., & Kim, N. K. (2014). Transcobalamin II (TCN2 67A > G and TCN2 776C > G) and transcobalamin II receptor (TCblR 1104C > T) polymorphisms in Korean patients with idiopathic recurrent spontaneous abortion. American Journal of Reproductive Immunology (New York, N.Y. : 1989), 72(3), 337–346. https://doi.org/10.1111/aji.12256
  • Kurnat-Thoma, E. L., Pangilinan, F., Matteini, A. M., Wong, B., Pepper, G. A., Stabler, S. P., Guralnik, J. M., & Brody, L. C. (2015). Association of transcobalamin II (TCN2) and transcobalamin II-receptor (TCblR) genetic variations with cobalamin deficiency parameters in elderly women. Biological Research for Nursing, 17(4), 444–454. https://doi.org/10.1177/1099800415569506
  • Landrum, M. J., Chitipiralla, S., Brown, G. R., Chen, C., Gu, B., Hart, J., Hoffman, D., Jang, W., Kaur, K., Liu, C., Lyoshin, V., Maddipatla, Z., Maiti, R., Mitchell, J., O'Leary, N., Riley, G. R., Shi, W., Zhou, G., Schneider, V., … Kattman, B. L. (2020). ClinVar: Improvements to accessing data. Nucleic Acids Research, 48(D1), D835–D44. https://doi.org/10.1093/nar/gkz972
  • Landrum, M. J., Lee, J. M., Riley, G. R., Jang, W., Rubinstein, W. S., Church, D. M., & Maglott, D. R. (2014). ClinVar: Public archive of relationships among sequence variation and human phenotype. Nucleic Acids Research, 42(Database issue), D980–5. https://doi.org/10.1093/nar/gkt1113
  • Lei, W., Xia, Y., Wu, Y., Fu, G., & Ren, A. (2018). Associations between MTR A2756G, MTRR A66G, and TCN2 C776G polymorphisms and risk of nonsyndromic cleft lip with or without cleft palate: A meta-analysis. Genetic Testing and Molecular Biomarkers, 22(8), 465–473. https://doi.org/10.1089/gtmb.2018.0037
  • Li, N., Seetharam, S., Rosenblatt, D. S., & Seetharam, B. (1994). Expression of transcobalamin II mRNA in human tissues and cultured fibroblasts from normal and transcobalamin II-deficient patients. Biochemical Journal, 301(2), 585–590. https://doi.org/10.1042/bj3010585
  • Lievers, K. J. A., Afman, L. A., Kluijtmans, L. A. J., Boers, G. H. J., Verhoef, P., den Heijer, M., Trijbels, F. J. M., & Blom, H. J. (2002). Polymorphisms in the transcobalamin gene: Association with plasma homocysteine in healthy individuals and vascular disease patients. Clinical Chemistry, 48(9), 1383–1389. https://doi.org/10.1093/clinchem/48.9.1383
  • Li, P., Huang, L., Zheng, Y., Pan, X., Peng, R., Jiang, Y., Finnell, R. H., Li, H., Qiao, B., & Wang, H.-Y. (2017). A missense mutation in TCN2 is associated with decreased risk for congenital heart defects and may increase cellular uptake of vitamin B12 via Megalin. Oncotarget, 8(33), 55216–55229. https://doi.org/10.18632/oncotarget.19377
  • Liu, S., Liu, M., Li, Q., Liu, X., Wang, Y., & Mambiya, M. (2019). Association of single nucleotide polymorphisms of MTHFR, TCN2, RNF213 with susceptibility to hypertension and blood pressure. Bioscience Reports, 39(12)
  • Moestrup, S. K. (2006). New insights into carrier binding and epithelial uptake of the erythropoietic nutrients cobalamin and folate. Current Opinion in Hematology, 13(3), 119–123.
  • Nexo, E. (1975). A new principle in biospecific affinity chromatography used for purification of cobalamin-binding proteins. Biochimica et Biophysica Acta, 379(1), 189–192.
  • Nexo, E., & Andersen, J. (1977). Unsaturated and cobalamin saturated transcobalamin I and II in normal human plasma. Scandinavian Journal of Clinical and Laboratory Investigation, 37(8), 723–728. https://doi.org/10.3109/00365517709101856
  • Nielsen, M. J., Rasmussen, M. R., Andersen, C. B., Nexo, E., & Moestrup, S. K. (2012). Vitamin B12 transport from food to the body's cells-a sophisticated, multistep pathway. Nature Reviews Gastroenterology & Hepatology, 9(6), 345–354. https://doi.org/10.1038/nrgastro.2012.76
  • Nissen, P. H., Nordwall, M., Hoffmann-Lucke, E., Sorensen, B. S., & Nexo, E. (2010). Transcobalamin deficiency caused by compound heterozygosity for two novel mutations in the TCN2 gene: A study of two affected siblings, their brother, and their parents. Journal of Inherited Metabolic Disease, 33(Suppl 3), S269–S74. https://doi.org/10.1007/s10545-010-9145-z
  • Oussalah, A., Levy, J., Filhine-Tresarrieu, P., Namour, F., & Gueant, J. L. (2017). Association of TCN2 rs1801198 c.776G > C polymorphism with markers of one-carbon metabolism and related diseases: A systematic review and meta-analysis of genetic association studies. The American Journal of Clinical Nutrition, 106(4), 1142–1156. https://doi.org/10.3945/ajcn.117.156349
  • Quadros, E. V., Rothenberg, S. P., Pan, Y. C., & Stein, S. (1986). Purification and molecular characterization of human transcobalamin II. The Journal of Biological Chemistry, 261(33), 15455–15460.
  • Quadros, E. V., Lai, S.-C., Nakayama, Y., Sequeira, J. M., Hannibal, L., Wang, S., Jacobsen, D. W., Fedosov, S., Wright, E., Gallagher, R. C., Anastasio, N., Watkins, D., & Rosenblatt, D. S. (2010). Positive newborn screen for methylmalonic aciduria identifies the first mutation in TCblR/CD320, the gene for cellular uptake of transcobalamin-bound vitamin B(12). Human Mutation, 31(8), 924–929. https://doi.org/10.1002/humu.21297
  • Raj, U., Kumar, H., & Varadwaj, P. K. (2017). Molecular docking and dynamics simulation study of flavonoids as BET bromodomain inhibitors. Journal of Biomolecular Structure & Dynamics, 35(11), 2351–2362. https://doi.org/10.1080/07391102.2016.1217276
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Sobczyńska-Malefora, A., Pangilinan, F., Plant, G. T., Velkova, A., Harrington, D. J., Molloy, A. M., & Brody, L. C. (2016). Association of a transcobalamin II genetic variant with falsely low results for the holotranscobalamin immunoassay. European Journal of Clinical Investigation, 46(5), 434–439. https://doi.org/10.1111/eci.12617
  • Spassov, V. Z., & Yan, L. (2013). pH-selective mutagenesis of protein-protein interfaces: In silico design of therapeutic antibodies with prolonged half-life. Proteins, 81(4), 704–714. https://doi.org/10.1002/prot.24230
  • Stanisławska-Sachadyn, A., Woodside, J. V., Sayers, C. M., Yarnell, J. W., Young, I. S., Evans, A. E., Mitchell, L. E., & Whitehead, A. S. (2010). The transcobalamin (TCN2) 776C > G polymorphism affects homocysteine concentrations among subjects with low vitamin B(12) status. European Journal of Clinical Nutrition, 64(11), 1338–1343. https://doi.org/10.1038/ejcn.2010.157
  • Swanson, D. A., Pangilinan, F., Mills, J. L., Kirke, P. N., Conley, M., Weiler, A., Frey, T., Parle-McDermott, A., O'Leary, V. B., Seltzer, R. R., Moynihan, K. A., Molloy, A. M., Burke, H., Scott, J. M., & Brody, L. C. (2005). Evaluation of transcobalamin II polymorphisms as neural tube defect risk factors in an Irish population. Birth Defects Research Part A, Clinical and Molecular Teratology, 73(4), 239–244. https://doi.org/10.1002/bdra.20122
  • Wuerges, J., Garau, G., Geremia, S., Fedosov, S. N., Petersen, T. E., & Randaccio, L. (2006). Structural basis for mammalian vitamin B12 transport by transcobalamin. Proceedings of the National Academy of Sciences of the United States of America, 103(12), 4386–4391. https://doi.org/10.1073/pnas.0509099103
  • Yu, M., Zhao, H., Miao, Y., Luo, S. Z., & Xue, S. (2021). Virtual Evolution of HVEM Segment for Checkpoint Inhibitor Discovery. International Journal of Molecular Sciences, 22(12)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.