182
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Exploring electronic, structural and dynamics parameters of phenylbenzothiazole complexes with Mn2+, Cu2+ and Zn2+ for designing new magnetic resonance imaging (MRI) probes: congruence between computation and spectroscopic data

, , , , , & show all
Pages 3234-3244 | Received 07 Nov 2021, Accepted 20 Feb 2022, Published online: 07 Mar 2022

References

  • Almeida, K. J. (2008). Optical and magnetic properties of copper (II) compounds [Doctoral dissertation]. Royal Institute of Technology Stockholm.
  • Bauer, W. R., Ziener, C. H., & Jakob, P. M. (2005). Non-Gaussian spin dephasing. Physical Review A, 71(5), 053412. https://doi.org/10.1103/PhysRevA.71.053412
  • Braga, L. S., Silva, É. F., Mancini, D. T., da Rocha, E. P., da Cunha, E. F. F., & Ramalho, T. C. (2020). Detection of chemical weapon agents using spectroscopic probes: A computational study. Journal of Chemistry, 2020, 1–11. https://doi.org/10.1155/2020/1312403
  • Cunha, E. F. F., Mancini, D. T., & Ramalho, T. C. (2012). Molecular modeling of the Toxoplasma gondii adenosine kinase inhibitors. Medicinal Chemistry Research, 21(5), 590–600. 2012, https://doi.org/10.1007/s00044-011-9554-z
  • de Lima, W. E. A., Pereira, F. A., de Castro, A. A., da Cunha, F. F. E., & Ramalho, C. T. (2016). Flexibility in the molecular design of acetylcholinesterase reactivators: Probing representative conformations by chemometric techniques and docking/QM calculations. Letters in Drug Design & Discovery, 13(5), 360–371. https://doi.org/10.2174/1570180812666150918191550
  • de Lima, W. E. A., Pereira, F. A., de Castro, A. A., da Cunha, F. F. E., & Ramalho, C. T. (2016). Flexibility in the molecular design of acetylcholinesterase reactivators: Probing representative conformations by chemometric techniques and docking/QM calculations. Letters in Drug Design & Discovery, 13(5), 360–371. https://doi.org/10.2174/1570180812666150918191550
  • De Sena, M. M., Poppi, R. J., Frighetto, R. T., & Valarini, P. J. (2000). Avaliação do uso de métodos quimiométricos em análise de solos. Química Nova, 23(4), 547–556. https://doi.org/10.1590/S0100-40422000000400019
  • dos Reis Lino, J. B., Gonçalves, M. A., & Ramalho, T. C. (2021). Value of NMR relaxation parameters of diamagnetic molecules for quantum information processing: Optimizing the coherent phase. Theoretical Chemistry Accounts, 140(1), 1–7. https://doi.org/10.1007/s00214-020-02706-9
  • Frisch, M J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L. Hada, M. … Fox, D. J. (2009). Gaussian 09. Gaussian, Inc.
  • Gale, E. M., Atanasova, I. P., Blasi, F., Ay, I., & Caravan, P. (2015). A manganese alternative to gadolinium for MRI contrast. Journal of the American Chemical Society, 137(49), 15548–15557. https://doi.org/10.1021/jacs.5b10748
  • Gonçalves, M. A., Santos, L. S., Prata, D. M., Peixoto, F. C., da Cunha, E. F. F., & Ramalho, T. C. (2017). Optimal wavelet signal compression as an efficient alternative to investigate molecular dynamics simulations: Application to thermal and solvent effects of MRI probes. Theoretical Chemistry Accounts, 136(1), 1–13. https://doi.org/10.1007/s00214-016-2037-z
  • Gross, J. E., Becker, D. J., Harrison, L. B., Smith, G. C., & Ennis, R. D. (2011). Dramatic increase in number of cancer cases and the use of definitive treatment in the extreme (≥ age 85) elderly. Journal of Clinical Oncology, 29(15_suppl), e19540–e19540. https://doi.org/10.1200/jco.2011.29.15_suppl.e19540
  • Hanselman, D., & Littlefield, B. C. (1997). Mastering MATLAB 5: A comprehensive tutorial and reference prentice hall. Prentice Hall.
  • Hicks, R. J., & Hofman, M. S. (2012). Is there still a role for SPECT-CT in oncology in the PET-CT era? Nature Reviews. Clinical Oncology, 9(12), 712–720. https://doi.org/10.1038/nrclinonc.2012.188
  • Jin, M., Li, W., Spillane, D. E., Geraldes, C. F., Williams, G. R., & Bligh, S. A. (2016). Hydroxy double salts intercalated with Mn(II) complexes as potential contrast agents. Solid State Sciences, 53, 9–16. https://doi.org/10.1016/j.solidstatesciences.2015.12.024
  • Klug, G., Kampf, T., Bloemer, S., Bremicker, J., Ziener, C. H., Heymer, A., Gbureck, U., Rommel, E., Nöth, U., Schenk, W. A., Jakob, P. M., & Bauer, W. R. (2010). Intracellular and extracellular T1 and T2 relaxivities of magneto-optical nanoparticles at experimental high fields. Magnetic Resonance in Medicine, 64(6), 1607–1615. https://doi.org/10.1002/mrm.22557
  • Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133
  • Lima, W. E. A., Francisco, A., Cunha, E. F. F., Radic, Z., Taylor, P., França, T. C. C., & Ramalho, T. C. (2017). Mechanistic studies of new oximes reactivators of human butyryl cholinesterase inhibited by cyclosarin and sarin. Journal of Biomolecular Structure & Dynamics, 35(6), 1272–1282. https://doi.org/10.1080/07391102.2016.1178173
  • Mancini, D. T., Souza, E. F., Caetano, M. S., & Ramalho, T. C. (2014). 99Tc NMR as a promising technique for structural investigation of biomolecules: Theoretical studies on the solvent and thermal effects of phenylbenzothiazole complex. Magnetic Resonance in Chemistry : MRC, 52(4), 129–137. https://doi.org/10.1002/mrc.4043
  • Michelle, G. (2012). Nature outlook Breast cancer. Nature, 485(7400), S49–S51. https://doi.org/10.1038/485S49a
  • Munck, L., Nørgaard, L., Engelsen, S. B., Bro, R., & Andersson, C. A. (1998). Chemometrics in food science – a demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemometrics and Intelligent Laboratory Systems, 44(1–2), 31–60. https://doi.org/10.1016/S0169-7439(98)00074-4
  • Nascimento, F. B., Pitta, M. G. R., & Rêgo, M. J. B. (2015). Análise dos principais métodos de diagnóstico de câncer de mama como propulsores no processo inovativo. Arquivos de Medicina, 29(6), 153–159.
  • Pan, D., Schmieder, A. H., Wickline, S. A., & Lanza, G. (2011). Manganese-based MRI contrast agents: Past, present and future. Tetrahedron, 67(44), 8431–8444. https://doi.org/10.1016/j.tet.2011.07.076
  • Panich, A. M., Salti, M., Goren, S. D., Yudina, E. B., Aleksenskii, A. E., Vul, A. Y., & Shames, A. I. (2019). Gd(III)-grafted detonation nanodiamonds for MRI contrast enhancement. The Journal of Physical Chemistry C, 123(4), 2627–2631. https://doi.org/10.1021/ACS.JPCC.8B11655/SUPPL_FILE/JP8B11655_SI_001.PDF
  • Panich, A. M., Salti, M., Prager, O., Swissa, E., Kulvelis, Y. V., Yudina, E. B., Aleksenskii, A. E., Goren, S. D., Vul', A. Y., & Shames, A. I. (2021). PVP-coated Gd-grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI. Magnetic Resonance in Medicine, 86(2), 935–942. https://doi.org/10.1002/mrm.28762
  • Panich, A. M., Shames, A. I., Aleksenskii, A. E., Yudina, E. B., & Vul', A. Y. (2021). Manganese-grafted detonation nanodiamond, a novel potential MRI contrast agent. Diamond and Related Materials, 119, 108590. https://doi.org/10.1016/j.diamond.2021.108590
  • Ramalho, T. C., & Figueroa-Villar, J. D. (2003). Thermodynamic evaluation of complexes of zinc and cadmium that mimetiza metallic centers in transcription factors. Magnetic Resonance in Chemistry, 4(12), 983–988. https://doi.org/10.1002/mrc.1299
  • Rosa, I. A. J., Giacoppo, O. S., Cunha, E. F. F., Fernades, I. A., Horvath, R. O. R., Ionta, O. M., Santos, M. H., & Ramalho, T. C. (2019). Structure‐based virtual screening and synthesis of Mn2+ complexes of benzothiazole derivatives for designing new MRI probes. Chemistry Select, 4, 3118–3122. 3122, https://doi.org/10.1002/slct.201803675
  • Sarkar, S., & Das, S. (2016). A review of imaging methods for prostate cancer detection. Biomedical Engineering and Computational Biology, 7(Suppl 1), 1–15. https://doi.org/10.4137/BECB.S34255
  • Sutradhar, K. B., & Amin, M. L. (2014). Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnology, 2014, 1–12. https://doi.org/10.1155/2014/939378
  • Teixeira, J. P., de Castro, A. A., Soares, F. V., da Cunha, E. F. F., & Ramalho, T. C. (2019). Future therapeutic perspectives into the Alzheimer’s disease targeting the oxidative stress hypothesis. Molecules, 24(23), 4410. https://doi.org/10.3390/molecules24234410
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • Varmuza, K., & Filzmoser, P. (2009). Introduction to multivariate statistical analysis in chemometrics. CRC press.
  • Weinmann, H.-J., Ebert, W., Misselwitz, B., & Schmitt-Willich, H. (2003). Tissue-specific MR contrast agents. European Journal of Radiology, 46(1), 33–44. https://doi.org/10.1016/S0720-048X(02)00332-7
  • World Health Organization. (2017). Guide to cancer early diagnosis. http://apps.who.int/iris/bitstream/10665/254500/1/9789241511940-eng.pdf?ua=1> to be found under 2018
  • Zhao, Y., & Truhlar, D. G. (2008). Density functionals with broad applicability in chemistry. Accounts of Chemical Research, 41(2), 157–167. https://doi.org/10.1021/ar700111a
  • Ziener, C. H., Bauer, W. R., Melkus, G., Weber, T., Herold, V., & Jakob, P. M. (2006). Structure-specific magnetic field inhomogeneities and its effect on the correlation time. Magnetic Resonance Imaging, 24(10), 1341–1347. https://doi.org/10.1016/j.mri.2006.08.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.