354
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

In silico screening of the effectiveness of natural compounds from algae as SARS-CoV-2 inhibitors: molecular docking, ADMT profile and molecular dynamic studies

, ORCID Icon, , , &
Pages 3129-3144 | Received 06 Oct 2021, Accepted 19 Feb 2022, Published online: 07 Mar 2022

References

  • Ahmadi, A., Zorofchian Moghadamtousi, S., Abubakar, S., & Zandi, K. (2015). Antiviral potential of algae polysaccharides isolated from marine sources: A review. BioMed Research International, 2015, 825203. https://doi.org/10.1155/2015/825203
  • Aliya, R., & Shameel, M. (2004). Marine natural products of Caulerpa (Siphonocladophyceae). Pakistan Journal of Botany, 35(5), 659–670.
  • Areche, C., San-Martín, A., Rovirosa, J., Soto-Delgado, J., & Contreras, R. (2009). An unusual halogenated meroditerpenoid from Stypopodium flabelliforme: Studies by NMR spectroscopic and computational methods. Phytochemistry, 70(10), 1315–1320. https://doi.org/10.1016/j.phytochem.2009.07.017
  • Argandoña, V., Del Pozo, T., San-Martín, A., & Rovirosa, J. (2000). Insecticidal activity of Plocamium cartilagineum monoterpenes. Boletín de la Sociedad Chilena de Química, 45(3), 371–376. https://doi.org/10.4067/S0366-16442000000300006
  • Ayyad, S.-E. N., Makki, M. S., Al-Kayal, N. S., Basaif, S. A., El-Foty, K. O., Asiri, A. M., Alarif, W. M., & Badria, F. A. (2011). Cytotoxic and protective DNA damage of three new diterpenoids from the brown alga Dictoyota dichotoma. European Journal of Medicinal Chemistry, 46(1), 175–182. https://doi.org/10.1016/j.ejmech.2010.10.033
  • Ayyad, S.-E. N., Sowellim, S. Z., El-Hosini, M. S., & Abo-Atia, A. (2003). The structural determination of a new steroidal metabolite from the brown alga Sargassum asperifolium. Zeitschrift Fur Naturforschung C, Journal of Biosciences, 58(5–6), 333–336. https://doi.org/10.1515/znc-2003-5-607
  • Becerra, M., Boutefnouchet, S., Córdoba, O., Vitorino, G. P., Brehu, L., Lamour, I., Laimay, F., Efstathiou, A., Smirlis, D., Michel, S., Kritsanida, M., Flores, M. L., & Grougnet, R. (2015). Antileishmanial activity of fucosterol recovered from Lessonia vadosa Searles (Lessoniaceae) by SFE, PSE and CPC. Phytochemistry Letters, 11, 418–423. https://doi.org/10.1016/j.phytol.2014.12.019
  • Bekker, H., Berendsen, H., Dijkstra, E., Achterop, S., Vondrumen, R., D, V., Sijbers, A., Keegstra, H., & Renardus, M. (1993). Gromacs-a parallel computer for molecular-dynamics simulations. In 4th International Conference on Computational Physics (PC 92) (pp. 252–256). World Scientific Publishing.
  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The protein data bank. Acta Crystallographica Section D, Biological Crystallography, 58(Pt 6 No 1), 899–907. https://doi.org/10.1107/s0907444902003451
  • Besednova, N. N., Zvyagintseva, T. N., Kuznetsova, T. A., Makarenkova, I. D., Smolina, T. P., Fedyanina, L. N., Kryzhanovsky, S. P., & Zaporozhets, T. S. (2019). Marine algae metabolites as promising therapeutics for the prevention and treatment of HIV/AIDS. Metabolites, 9(5), 87. https://doi.org/10.3390/metabo9050087
  • Brotosudarmo, T. H. P., Limantara, L., & Setiyono, E. (2020). Structures of astaxanthin and their consequences for therapeutic application. International Journal of Food Science, 2020 https://doi.org/10.1155/2020/2156582
  • Carte, B. K. (1996). Biomedical potential of marine natural products. Bioscience, 46(4), 271–286.
  • Collin, J., Byström, E., Carnahan, A., & Ahrne, M. (2020). Public Health Agency of Sweden's Brief Report: Pregnant and postpartum women with severe acute respiratory syndrome coronavirus 2 infection in intensive care in Sweden. Acta Obstetricia et Gynecologica Scandinavica, 99(7), 819–822. https://doi.org/10.1111/aogs.13901
  • Combaut, G., Bruneau, Y., Codomier, L., & Teste, J. (1979). Comparative sterols composition of the red alga Asparagopsis armata and its tetrasporophyte Falkenbergia rufolanosa. Journal of Natural Products, 42(2), 150–151. https://doi.org/10.1021/np50002a002
  • da Silva Machado, F. L., Pacienza-Lima, W., Rossi-Bergmann, B., de Souza Gestinari, L. M., Fujii, M. T., de Paula, J. C., Costa, S. S., Lopes, N. P., Kaiser, C. R., & Soares, A. R. (2011). Antileishmanial sesquiterpenes from the Brazilian red alga Laurencia dendroidea. Planta Medica, 77(7), 733–735. https://doi.org/10.1055/s-0030-1250526
  • Dassault Systèmes Biovia. (2017). Discovery studio visualizer.
  • De Souza, L. M., Sassaki, G. L., Romanos, M. T. V., & Barreto-Bergter, E. (2012). Structural characterization and anti-HSV-1 and HSV-2 activity of glycolipids from the marine algae Osmundaria obtusiloba isolated from Southeastern Brazilian Coast. Marine Drugs, 10(4), 918–931. https://doi.org/10.3390/md10040918
  • Deng, X., & Baker, S. C. (2018). An “Old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology, 517, 157–163. https://doi.org/10.1016/j.virol.2017.12.024
  • Dorta, E., Cueto, M., Brito, I., & Darias, J. (2002). New terpenoids from the brown alga Stypopodium zonale. Journal of Natural Products, 65(11), 1727–1730. https://doi.org/10.1021/np020090g
  • Elizondo-Gonzalez, R., Cruz-Suarez, L. E., Ricque-Marie, D., Mendoza-Gamboa, E., Rodriguez-Padilla, C., & Trejo-Avila, L. M. (2012). In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virology Journal, 9(1), 307. https://doi.org/10.1186/1743-422X-9-307
  • Espinosa, J. R., Wand, C. R., Vega, C., Sanz, E., & Frenkel, D. (2018). Calculation of the water-octanol partition coefficient of cholesterol for SPC, TIP3P, and TIP4P water. The Journal of Chemical Physics, 149(22), 224501. https://doi.org/10.1063/1.5054056
  • Fenical, W., & Paul, V. J. (1984). Antimicrobial and cytotoxic terpenoids from tropical green algae of the family Udoteaceae. In 11th International Seaweed Symposium (pp. 135–140). Springer.
  • García, P. A., Hernández, Á. P., San Feliciano, A., & Castro, M. (2018). Bioactive prenyl-and terpenyl-quinones/hydroquinones of marine origin. Marine Drugs, 16(9), 292. https://doi.org/10.3390/md16090292
  • Gentile, D., Patamia, V., Scala, A., Sciortino, M. T., Piperno, A., & Rescifina, A. (2020). Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Marine Drugs, 18(4), 225. https://doi.org/10.3390/md18040225
  • Gupta, P., & Mahajan, A. (2020). Approaches for the development of potential dengue inhibitors. Synthetic Communications, 50(15), 2250–2265. https://doi.org/10.1080/00397911.2020.1764584
  • Hui, D. S., I Azhar, E., Madani, T. A., Ntoumi, F., Kock, R., Dar, O., Ippolito, G., Mchugh, T. D., Memish, Z. A., Drosten, C., Zumla, A., & Petersen, E. (2020). The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 91, 264–266. https://doi.org/10.1016/j.ijid.2020.01.009
  • Hwang, S. H., Kim, J. M., Kim, S., Yoon, M. J., & Park, K. S. (2020). Chemical transformatioen of astaxanthin from Haematococcus pluvialis improves its antioxidative and anti-inflammatory activities. ACS Omega, 5(30), 19120–19130. https://doi.org/10.1021/acsomega.0c02479
  • I. S., Gutiérrez, F.-Y., Lin, K., Vanommeslaeghe, J. A., Lemkul, K. A., Armacost, C. L., Brooks, I. I. I., A. D. & MacKerell, Jr, (2016). Parametrization of halogen bonds in the CHARMM general force field: Improved treatment of ligand-protein interactions. Bioorganic & Medicinal Chemistry, 24(20), 4812–4825. https://doi.org/10.1016/j.bmc.2016.06.034
  • Ishii, T., Nagamine, T., Nguyen, B. C. Q., & Tawata, S. (2017). Insecticidal and repellent activities of laurinterol from the Okinawan red alga Laurencia nidifica. Records of Natural Products, 11, 63–68.
  • Islam, M. R., Mikami, D., & Kurihara, H. (2017). Two new algal bromophenols from Odonthalia corymbifera. Tetrahedron Letters, 58(43), 4119–4121. https://doi.org/10.1016/j.tetlet.2017.09.044
  • Kim, Y.-M., Choi, Y.-S., & Park, J.-H. (2006). Purification and chemical characterisation of Laminaran from Eisenia bicyclis in Korea. Journal of the Korean Society of Food Science and Nutrition, 35(1), 78–86. https://doi.org/10.3746/jkfn.2006.35.1.078
  • Kim, S.-Y., Kim, S. R., Oh, M.-J., Jung, S.-J., & Kang, S. Y. (2011). In vitro antiviral activity of red alga, Polysiphonia morrowii extract and its bromophenols against fish pathogenic infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. Journal of Microbiology (Seoul, Korea), 49(1), 102–106. https://doi.org/10.1007/s12275-011-1035-z
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Kim, Y., Wower, J., Maltseva, N., Chang, C., Jedrzejczak, R., Wilamowski, M., Kang, S., Nicolaescu, V., Randall, G., & Michalska, K. (2021). Tipiracil binds to uridine site and inhibits Nsp15 endoribonuclease NendoU from SARS-CoV-2. Communications Biology, 4(1), 1–11. https://doi.org/10.1038/s42003-021-01735-9
  • Kim, M., Yim, J. H., Kim, S.-Y., Kim, H. S., Lee, W. G., Kim, S. J., Kang, P.-S., & Lee, C.-K. (2012). In vitro inhibition of influenza A virus infection by marine microalga-derived sulfated polysaccharide p-KG03. Antiviral Research, 93(2), 253–259. https://doi.org/10.1016/j.antiviral.2011.12.006
  • Kladi, M., Xenaki, H., Vagias, C., Papazafiri, P., & Roussis, V. (2006). New cytotoxic sesquiterpenes from the red algae Laurencia obtusa and Laurencia microcladia. Tetrahedron, 62(1), 182–189. https://doi.org/10.1016/j.tet.2005.09.113
  • Kubo, I., & Smith, L. (1997). Crinitol, an acyclic diterpene diol from marine algae. Studies in Natural Products Chemistry, 25–39.
  • Kuda, T., Yano, T., Matsuda, N., & Nishizawa, M. (2005). Inhibitory effects of laminaran and low molecular alginate against the putrefactive compounds produced by intestinal microflora in vitro and in rats. Food Chemistry, 91(4), 745–749. https://doi.org/10.1016/j.foodchem.2004.06.047
  • Kurihara, H., Mitani, T., Kawabata, J., & Takahashi, K. (1999). Two new bromophenols from the red alga Odonthalia corymbifera. Journal of Natural Products, 62(6), 882–884. https://doi.org/10.1021/np980324p
  • Lane, A. L., Mular, L., Drenkard, E. J., Shearer, T. L., Engel, S., Fredericq, S., Fairchild, C. R., Prudhomme, J., Le Roch, K., Hay, M. E., Aalbersberg, W., & Kubanek, J. (2010). Ecological leads for natural product discovery: Novel sesquiterpene hydroquinones from the red macroalga Peyssonnelia sp. Tetrahedron, 66(2), 455–461. https://doi.org/10.1016/j.tet.2009.11.042
  • Lane, A. L., Stout, E. P., Lin, A.-S., Prudhomme, J., Roch, K. L., Fairchild, C. R., Franzblau, S. G., Hay, M. E., Aalbersberg, W., & Kubanek, J. (2009). Antimalarial Bromophycolides J-Q from the Fijian red alga Callophycus serratus. The Journal of Organic Chemistry, 74(7), 2736–2742. https://doi.org/10.1021/jo900008w
  • Li, Y., Fu, X., Duan, D., Liu, X., Xu, J., & Gao, X. (2017). Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme (Harvey) Setchell. Marine Drugs, 15(2), 49. https://doi.org/10.3390/md15020049
  • Liu, J., Obaidi, I., Nagar, S., Scalabrino, G., & Sheridan, H. (2021). The antiviral potential of algal-derived macromolecules. Current Research in Biotechnology, 3, 120–134. https://doi.org/10.1016/j.crbiot.2021.04.003
  • Lopes, G., Sousa, C., Bernardo, J., Andrade, P. B., Valentão, P., Ferreres, F., & Mouga, T. (2011). 18 macroalgae of the Portuguese coast 1. Journal of Phycology, 47(5), 1210–1218. https://doi.org/10.1111/j.1529-8817.2011.01028.x
  • M., Colon, P., Guevara, W. H., Gerwick, D., & Ballantine, 5. (1987). 5'-Hydroxyisoavrainvilleol, a new diphenylmethane derivative from the tropical green alga Avrainvillea nigricans. Journal of Natural Products, 50(3), 368–374. https://doi.org/10.1021/np50051a005
  • Magarvey, N. A., Beck, Z. Q., Golakoti, T., Ding, Y., Huber, U., Hemscheidt, T. K., Abelson, D., Moore, R. E., & Sherman, D. H. (2006). Biosynthetic characterization and chemoenzymatic assembly of the cryptophycins. Potent anticancer agents from cyanobionts. ACS Chemical Biology, 1(12), 766–779. https://doi.org/10.1021/cb6004307
  • Makhaeva, G. F., Elkina, N. A., Shchegolkov, E. V., Boltneva, N. P., Lushchekina, S. V., Serebryakova, O. G., Rudakova, E. V., Kovaleva, N. V., Radchenko, E. V., Palyulin, V. A., Burgart, Y. V., Saloutin, V. I., Bachurin, S. O., & Richardson, R. J. (2019). Synthesis, molecular docking, and biological evaluation of 3-oxo-2-tolylhydrazinylidene-4,4,4-trifluorobutanoates bearing higher and natural alcohol moieties as new selective carboxylesterase inhibitors. Bioorganic Chemistry, 91, 103097. https://doi.org/10.1016/j.bioorg.2019.103097
  • Malik, R., Mehta, P., Srivastava, S., Choudhary, B. S., & Sharma, M. (2017). Structure-based screening, ADMET profiling, and molecular dynamic studies on mGlu2 receptor for identification of newer antiepileptic agents. Journal of Biomolecular Structure & Dynamics, 35(16), 3433–3448. https://doi.org/10.1080/07391102.2016.1257440
  • Mei, C., Zhou, S., Zhu, L., Ming, J., Zeng, F., & Xu, R. (2017). Antitumor effects of laminaria extract fucoxanthin on lung cancer. Marine Drugs, 15(2), 39. https://doi.org/10.3390/md15020039
  • Mendes, G., Soares, A. R., Sigiliano, L., Machado, F., Kaiser, C., Romeiro, N., Gestinari, L., Santos, N., & Romanos, M. T. V. (2011). In vitro anti-HMPV activity of meroditerpenoids from marine alga Stypopodium zonale (Dictyotales). Molecules (Basel, Switzerland), 16(10), 8437–8450.), https://doi.org/10.3390/molecules16108437
  • Mengist, H. M., Dilnessa, T., & Jin, T. (2021). Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Frontiers in Chemistry, 9, 622898. https://doi.org/10.3389/fchem.2021.622898
  • Moore, R. (1996). Cyclic peptides and depsipeptides from cyanobacteria: A review. Journal of Industrial Microbiology, 16(2), 134–143. https://doi.org/10.1007/BF01570074
  • Nagorskaia, V. P., Reunov, A. V., Lapshina, L. A., Ermak, I. M., & Barabanova, A. O. (2008). Influence of kappa/beta-carrageenan from red alga Tichocarpus crinitus on development of local infection induced by tobacco mosaic virus in Xanthi-nc tobacco leaves. Izvestiia Akademii nauk. Seriia Biologicheskaia, (3), 360–364.
  • Park, J.-Y., Kim, J. H., Kwon, J. M., Kwon, H.-J., Jeong, H. J., Kim, Y. M., Kim, D., Lee, W. S., & Ryu, Y. B. (2013). Dieckol, a SARS-CoV 3CL(pro) inhibitor, isolated from the edible brown algae Ecklonia cava. Bioorganic & Medicinal Chemistry, 21(13), 3730–3737. https://doi.org/10.1016/j.bmc.2013.04.026
  • Park, S., Yun, E., Hwang, I. H., Yoon, S., Kim, D.-E., Kim, J. S., Na, M., Song, G.-Y., & Oh, S. (2014). Ilimaquinone and ethylsmenoquinone, marine sponge metabolites, suppress the proliferation of multiple myeloma cells by down-regulating the level of β-catenin. Marine Drugs, 12(6), 3231–3244. https://doi.org/10.3390/md12063231
  • Ploetz, E. A., & Smith, P. E. (2017). Simulated pressure denaturation thermodynamics of ubiquitin. Biophysical Chemistry, 231, 135–145. https://doi.org/10.1016/j.bpc.2017.04.006
  • Popplewell, W. L., & Northcote, P. T. (2009). Colensolide A: A new nitrogenous bromophenol from the New Zealand marine red alga Osmundaria colensoi. Tetrahedron Letters, 50(49), 6814–6817. https://doi.org/10.1016/j.tetlet.2009.09.118
  • Rashid, M. (2020). Design, synthesis and ADMET prediction of bis-benzimidazole as anticancer agent. Bioorganic Chemistry, 96, 103576. https://doi.org/10.1016/j.bioorg.2020.103576
  • Sabry, O. M., Andrews, S., McPhail, K. L., Goeger, D. E., Yokochi, A., LePage, K. T., Murray, T. F., & Gerwick, W. H. (2005). Neurotoxic meroditerpenoids from the tropical marine brown alga Stypopodium flabelliforme. Journal of Natural Products, 68(7), 1022–1030. https://doi.org/10.1021/np050051f
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Sang, P., Yang, L.-Q., Ji, X.-L., Fu, Y.-X., & Liu, S.-Q. (2014). Insight derived from molecular dynamics simulations into molecular motions, thermodynamics and kinetics of HIV-1 gp120. PLoS One, 9(8), e104714. https://doi.org/10.1371/journal.pone.0104714
  • Smyrniotopoulos, V., Merten, C., Kaiser, M., & Tasdemir, D. (2017). Bifurcatriol, a new antiprotozoal acyclic diterpene from the brown alga Bifurcaria bifurcata. Marine Drugs, 15(8), 245. https://doi.org/10.3390/md15080245
  • Soares, A. R., Robaina, M. C. S., Mendes, G. S., Silva, T. S. L., Gestinari, L. M. S., Pamplona, O. S., Yoneshigue-Valentin, Y., Kaiser, C. R., & Romanos, M. T. V. (2012). Antiviral activity of extracts from Brazilian seaweeds against herpes simplex virus. Revista Brasileira de Farmacognosia, 22(4), 714–723. https://doi.org/10.1590/S0102-695X2012005000061
  • Stevenson, C. S., Capper, E. A., Roshak, A. K., Marquez, B., Eichman, C., Jackson, J. R., Mattern, M., Gerwick, W. H., Jacobs, R. S., & Marshall, L. A. (2002). The identification and characterization of the marine natural product scytonemin as a novel antiproliferative pharmacophore. The Journal of Pharmacology and Experimental Therapeutics, 303(2), 858–866. https://doi.org/10.1124/jpet.102.036350
  • Subissi, L., Posthuma, C. C., Collet, A., Zevenhoven-Dobbe, J. C., Gorbalenya, A. E., Decroly, E., Snijder, E. J., Canard, B., & Imbert, I. (2014). One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences of the United States of America, 111(37), E3900–E3909. https://doi.org/10.1073/pnas.1323705111
  • Talukdar, J., Bhadra, B., Dattaroy, T., Nagle, V., & Dasgupta, S. (2020). Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 132, 110886. https://doi.org/10.1016/j.biopha.2020.110886
  • Terasawa, M., Hayashi, K., Lee, J.-B., Nishiura, K., Matsuda, K., Hayashi, T., & Kawahara, T. (2020). Anti-influenza A virus activity of rhamnan sulfate from green algae Monostroma nitidum in mice with normal and compromised immunity. Marine Drugs, 18(5), 254. https://doi.org/10.3390/md18050254
  • Vairappan, C. S., Ishii, T., Lee, T. K., Suzuki, M., & Zhaoqi, Z. (2010). Antibacterial activities of a new brominated diterpene from Borneon Laurencia spp. Marine Drugs, 8(6), 1743–1749. https://doi.org/10.3390/md8061743
  • Vairappan, C. S., Suzuki, M., Ishii, T., Okino, T., Abe, T., & Masuda, M. (2008). Antibacterial activity of halogenated sesquiterpenes from Malaysian Laurencia spp. Phytochemistry, 69(13), 2490–2494. https://doi.org/10.1016/j.phytochem.2008.06.015
  • Van Wyk, A. W., Zuck, K. M., & McKee, T. C. (2011). Lithothamnin a, the first bastadin-like metabolite from the red alga Lithothamnion fragilissimum. Journal of Natural Products, 74(5), 1275–1280. https://doi.org/10.1021/np1006795
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Veiga-Santos, P., Pelizzaro-Rocha, K., Santos, A., Ueda-Nakamura, T., Dias Filho, B., Silva, S., Sudatti, D., Bianco, E., Pereira, R., & Nakamura, C. (2010). In vitro anti-trypanosomal activity of elatol isolated from red seaweed Laurencia dendroidea. Parasitology, 137(11), 1661–1670. https://doi.org/10.1017/S003118201000034X
  • Verdier-Pinard, P., Lai, J. Y., Yoo, H. D., Yu, J., Marquez, B., Nagle, D. G., Nambu, M., White, J. D., Falck, J. R., Gerwick, W. H., Day, B. W., & Hamel, E. (1998). Structure-activity analysis of the interaction of curacin A, the potent colchicine site antimitotic agent, with tubulin and effects of analogs on the growth of MCF-7 breast cancer cells. Molecular Pharmacology, 53(1), 62–76. https://doi.org/10.1124/mol.53.1.62
  • Wang, Z., Yang, H., Wu, Z., Wang, T., Li, W., Tang, Y., & Liu, G. (2018). In silico prediction of blood-brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem, 13(20), 2189–2201. https://doi.org/10.1002/cmdc.201800533
  • Watanabe, K., Miyakado, M., Ohno, N., Okada, A., Yanagi, K., & Moriguchi, K. (1989). A polyhalogenated insecticidal monoterpene from the red alga, Plocamium telfairiae. Phytochemistry, 28(1), 77–78. https://doi.org/10.1016/0031-9422(89)85012-5
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, N.Y.), 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Yang, H., & Rao, Z. (2021). Structural biology of SARS-CoV-2 and implications for therapeutic development. Nature Reviews Microbiology, 19(11), 685–616. https://doi.org/10.1038/s41579-021-00630-8
  • Zhang, J., Li, B., Qin, Y., Karthik, L., Zhu, G., Hou, C., Jiang, L., Liu, M., Ye, X., Liu, M., Hsiang, T., Dai, H., Zhang, L., & Liu, X. (2020). A new abyssomicin polyketide with anti-influenza A virus activity from a marine-derived Verrucosispora sp. MS100137Applied Microbiology and Biotechnology, 104(4), 1533–1543. https://doi.org/10.1007/s00253-019-10217-2
  • Zhang, D., Wan, M., Ehecatl, A., Huang, J., Wang, W., Li, Y., & Vassiliadis, V. S. (2016). Dynamic modelling of Haematococcus pluvialis photoinduction for astaxanthin production in both attached and suspended photobioreactors. Algal Research, 13, 69–78. https://doi.org/10.1016/j.algal.2015.11.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.