214
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Unbinding of hACE2 and inhibitors from the receptor binding domain of SARS-CoV-2 spike protein

&
Pages 3245-3264 | Received 03 Dec 2021, Accepted 20 Feb 2022, Published online: 16 Mar 2022

References

  • Ali, A., & Vijayan, R. (2020). Dynamics of the ACE2-SARS-CoV-2/SARS-CoV spike protein interface reveal unique mechanisms. Scientific Reports, 10(1), 14214. https://doi.org/10.1038/s41598-020-71188-3
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(Web Server issue), W537–W541. https://doi.org/10.1093/nar/gks375
  • Arya, R., Kumari, S., Pandey, B., Mistry, H., Bihani, S. C., Das, A., Prashar, V., Gupta, G. D., Panicker, L., & Kumar, M. (2021). Structural insights into SARS-CoV-2 proteins. Journal of Molecular Biology, 433(2), 166725. https://doi.org/10.1016/j.jmb.2020.11.024
  • Bai, C., & Warshel, A. (2020). Critical differences between the binding features of the spike proteins of SARS-CoV-2 and SARS-CoV. The Journal of Physical Chemistry. B, 124(28), 5907–5912. https://doi.org/10.1021/acs.jpcb.0c04317
  • Barducci, A., Bussi, G., & Parrinello, M. (2008). Well-tempered metadynamics: A smoothly converging and tunable free-energy method. Physical Review Letters, 100(2), 020603. https://doi.org/10.1103/PhysRevLett.100.020603
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bodier-Montagutelli, E., Mayor, A., Vecellio, L., Respaud, R., & Heuzé-Vourc'h, N. (2018). Designing inhaled protein therapeutics for topical lung delivery: what are the next steps? Expert Opinion on Drug Delivery, 15(8), 729–736. https://doi.org/10.1080/17425247.2018.1503251
  • Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R. A., & Parrinello, M. (2009). PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Computer Physics Communications, 180(10), 1961–1972. https://doi.org/10.1016/j.cpc.2009.05.011
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Cao, Y., Su, B., Guo, X., Sun, W., Deng, Y., Bao, L., Zhu, Q., Zhang, X., Zheng, Y., Geng, C., Chai, X., He, R., Li, X., Lv, Q., Zhu, H., Deng, W., Xu, Y., Wang, Y., Qiao, L., … Xie, X. S. (2020). Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells. Cell, 182(1), 73–84. https://doi.org/10.1016/j.cell.2020.05.025
  • Casalino, L., Gaieb, Z., Goldsmith, J. A., Hjorth, C. K., Dommer, A. C., Harbison, A. M., Fogarty, C. A., Barros, E. P., Taylor, B. C., McLellan, J. S., Fadda, E., & Amaro, R. E. (2020). Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Central Science, 6(10), 1722–1734. https://doi.org/10.1021/acscentsci.0c01056
  • Chan, J. F.-W., Yuan, S., Kok, K.-H., To, K. K.-W., Chu, H., Yang, J., Xing, F., Liu, J., Yip, C. C.-Y., Poon, R. W.-S., Tsoi, H.-W., Lo, S. K.-F., Chan, K.-H., Poon, V. K.-M., Chan, W.-M., Ip, J. D., Cai, J.-P., Cheng, V. C.-C., Chen, H., Hui, C. K.-M., & Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. The Lancet, 395(10223), 514–523. https://doi.org/10.1016/S0140-6736(20)30154-9
  • Chen, Q., Allot, A., & Lu, Z. (2021). LitCovid: An open database of COVID-19 literature. Nucleic Acids Research, 49(D1), D1534–D1540. https://doi.org/10.1093/nar/gkaa952
  • Chen, R. E., Zhang, X., Case, J. B., Winkler, E. S., Liu, Y., VanBlargan, L. A., Liu, J., Errico, J. M., Xie, X., Suryadevara, N., Gilchuk, P., Zost, S. J., Tahan, S., Droit, L., Turner, J. S., Kim, W., Schmitz, A. J., Thapa, M., Wang, D., … Diamond, M. S. (2021). Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 27(4), 717–726. https://doi.org/10.1038/s41591-021-01294-w
  • Chowdhury, S. M., Talukder, S. A., Khan, A. M., Afrin, N., Ali, M. A., Islam, R., Parves, R., Al Mamun, A., Sufian, M. A., Hossain, M. N., Hossain, M. A., & Halim, M. A. (2020). Antiviral peptides as promising therapeutics against SARS-CoV-2. The Journal of Physical Chemistry B, 124(44), 9785–9792. https://doi.org/10.1021/acs.jpcb.0c05621
  • Constantinos Kurt, W., Frances, A., Tandile, H., Mashudu, M., Prudence, K., Brent, O., Bronwen, E. L., Tulio de, O., Marion, V., Karin van der, B., Theresa, R., Michael, B., Veronica, U., Susan, M., Anne von, G., Cheryl, C., Lynn, M., Jinal, N. B., & Penny, L. M. (2021) . SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nature Medicine, 27, 622–625.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • DeFrancesco, L. (2020). COVID-19 antibodies on trial. Nature Biotechnology, 38(11), 1242–1252. https://doi.org/10.1038/s41587-020-0732-8
  • Donoghue, M., Wakimoto, H., Maguire, C. T., Acton, S., Hales, P., Stagliano, N., Fairchild-Huntress, V., Xu, J., Lorenz, J. N., Kadambi, V., Berul, C. I., & Breitbart, R. E. (2003). Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins. Journal of Molecular and Cellular Cardiology, 35(9), 1043–1053. https://doi.org/10.1016/S0022-2828(03)00177-9
  • Du, L., He, Y., Zhou, Y., Liu, S., Zheng, B.-J., & Jiang, S. (2009). The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nature Reviews. Microbiology, 7(3), 226–236. https://doi.org/10.1038/nrmicro2090
  • Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., Zhou, M., Chen, L., Meng, S., Hu, Y., Peng, C., Yuan, M., Huang, J., Wang, Z., Yu, J., Gao, X., Wang, D., Yu, X., Li, L., … Yang, X. (2020). Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proceedings of the National Academy of Sciences of the United States of America, 117(17), 9490–9496. https://doi.org/10.1073/pnas.2004168117
  • Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L.-P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., & Pande, V. S. (2017). OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Computational Biology, 13(7), e1005659. https://doi.org/10.1371/journal.pcbi.1005659
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Forni, G., Mantovani, A., Forni, G., Mantovani, A., Moretta, L., Rappuoli, R., Rezza, G., Bagnasco, A., Barsacchi, G., Bussolati, G., Cacciari, M., Cappuccinelli, P., Cheli, E., Guarini, R., Bacci, M. L., Mancini, M., Marcuzzo, C., Morrone, M. C., Parisi, G., … COVID-19 Commission of Accademia Nazionale dei Lincei, Rome. (2021). COVID-19 vaccines: Where we stand and challenges ahead. Cell Death and Differentiation, 28(2), 626–639.
  • Garber, K. (2021). Hunt for improved monoclonals against coronavirus gathers pace. Nature Biotechnology, 39(1), 9–12. https://doi.org/10.1038/s41587-020-00791-6
  • García-Iriepa, C., Hognon, C., Francés-Monerris, A., Iriepa, I., Miclot, T., Barone, G., Monari, A., & Marazzi, M. (2020). Thermodynamics of the interaction between the spike protein of severe acute respiratory syndrome coronavirus-2 and the receptor of human angiotensin-converting enzyme 2. Effects of possible ligands. The Journal of Physical Chemistry Letters, 11(21), 9272–9281. https://doi.org/10.1021/acs.jpclett.0c02203
  • Gervasio, F. L., Laio, A., & Parrinello, M. (2005). Flexible docking in solution using metadynamics. Journal of the American Chemical Society, 127(8), 2600–2607. https://doi.org/10.1021/ja0445950
  • Ghorbani, M., Brooks, B. R., & Klauda, J. B. (2020). Critical sequence hotspots for binding of novel coronavirus to angiotensin converter enzyme as evaluated by molecular simulations. The Journal of Physical Chemistry. B, 124(45), 10034–10047. https://doi.org/10.1021/acs.jpcb.0c05994
  • Glasgow, A., Glasgow, J., Limonta, D., Solomon, P., Lui, I., Zhang, Y., Nix, M. A., Rettko, N. J., Zha, S., Yamin, R., Kao, K., Rosenberg, O. S., Ravetch, J. V., Wiita, A. P., Leung, K. K., Lim, S. A., Zhou, X. X., Hobman, T. C., Kortemme, T., & Wells, J. A. (2020). Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(45), 28046–28055. https://doi.org/10.1073/pnas.2016093117
  • Han, Y., & Král, P. (2020). Computational design of ACE2-based peptide inhibitors of SARS-CoV-2. ACS Nano, 14(4), 5143–5147. https://doi.org/10.1021/acsnano.0c02857
  • Hanke, L., Vidakovics Perez, L., Sheward, D. J., Das, H., Schulte, T., Moliner-Morro, A., Corcoran, M., Achour, A., Karlsson Hedestam, G. B., Hällberg, B. M., Murrell, B., & McInerney, G. M. (2020). An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nature Communications, 11(1), 4420. https://doi.org/10.1038/s41467-020-18174-5
  • Hess, B., Bekker, H., Berendsen Herman, J. C., & Fraaije Johannes, G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Jiang, S., Zhang, X., Yang, Y., Hotez, P. J., & Du, L. (2020). Neutralizing antibodies for the treatment of COVID-19. Nature Biomedical Engineering, 4(12), 1134–1139. https://doi.org/10.1038/s41551-020-00660-2
  • Jianliang, X., Kai, X., Seolkyoung, J., Andrea, C., Jenna, L., Frauke, M., Julio Cesar Cetrulo, L., Solji, P., Fabian, S., Zijun, W., Yaoxing, H., Yang, L., Manoj, N., Pengfei, W., Jonathan, E. S., Lino, T., Tatsiana, B., Gwo-Yu, C., Adam, S. O., … Rafael, C. (2021). Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 595, 278–282. https://doi.org/10.1038/s41586-021-03676-z.
  • Jorgensen, W. L., & Jenson, C. (1998). Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density. Journal of Computational Chemistry, 19(10), 1179–1186. https://doi.org/10.1002/(SICI)1096-987X(19980730)19:10<1179::AID-JCC6>3.0.CO;2-J
  • Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., Tang, X., Yu, J., Lan, J., Yuan, J., Wang, H., Zhao, J., Zhang, S., Wang, Y., Shi, X., … Zhang, L. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 584(7819), 115–119. https://doi.org/10.1038/s41586-020-2380-z
  • Khan, A., Zia, T., Suleman, M., Khan, T., Ali, S. S., Abbasi, A. A., Mohammad, A., & Wei, D.-Q. (2021). Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. Journal of Cellular Physiology, 236(10), 7045–7013. https://doi.org/10.1002/jcp.30367
  • Kumawat, A., Namsani, S., Pramanik, D., Roy, S., & Singh, J. K. (2021). Integrated docking and enhanced sampling-based selection of repurposing drugs for SARS-CoV-2 by targeting host dependent factors. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2021.1937319
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Laurini, E., Marson, D., Aulic, S., Fermeglia, A., & Pricl, S. (2021). Computational mutagenesis at the SARS-CoV-2 spike protein/angiotensin-converting enzyme 2 binding interface: Comparison with experimental evidence. ACS Nano, 15(4), 6929–6948. https://doi.org/10.1021/acsnano.0c10833
  • Laurini, E., Marson, D., Aulic, S., Fermeglia, M., & Pricl, S. (2020). Computational alanine scanning and structural analysis of the SARS-CoV-2 spike protein/angiotensin-converting enzyme 2 complex. ACS Nano, 14(9), 11821–11830. https://doi.org/10.1021/acsnano.0c04674
  • Leader, B., Baca, Q. J., & Golan, D. E. (2008). Protein therapeutics: A summary and pharmacological classification. Nature Reviews. Drug Discovery, 7(1), 21–39. https://doi.org/10.1038/nrd2399
  • Li, Y., Wan, Y., Liu, P., Zhao, J., Lu, G., Qi, J., Wang, Q., Lu, X., Wu, Y., Liu, W., Zhang, B., Yuen, K.-Y., Perlman, S., Gao, G. F., & Yan, J. (2015). A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Research, 25(11), 1237–1249. https://doi.org/10.1038/cr.2015.113
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Ling, R., Dai, Y., Huang, B., Huang, W., Yu, J., Lu, X., & Jiang, Y. (2020). In silico design of antiviral peptides targeting the spike protein of SARS-CoV-2. Peptides, 130, 170328. https://doi.org/10.1016/j.peptides.2020.170328
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. The Lancet, 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Luan, B., & Huynh, T. (2020). In silico antibody mutagenesis for optimizing its binding to spike protein of severe acute respiratory syndrome coronavirus 2. The Journal of Physical Chemistry Letters, 11(22), 9781–9787. https://doi.org/10.1021/acs.jpclett.0c02706
  • McKee, M., & Stuckler, D. (2020). If the world fails to protect the economy, COVID-19 will damage health not just now but also in the future. Nature Medicine, 26(5), 640–642. https://doi.org/10.1038/s41591-020-0863-y
  • Moreira, R. A., Chwastyk, M., Baker, J. L., Guzman, H. V., & Poma, A. B. (2020). Quantitative determination of mechanical stability in the novel coronavirus spike protein. Nanoscale, 12(31), 16409–16413. https://doi.org/10.1039/d0nr03969a
  • Namsani, S., Pramanik, D., Khan, M. A., Roy, S., & Singh, J. K. (2021). Metadynamics-based enhanced sampling protocol for virtual screening: Case study for 3CLpro protein for SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2021.1892530
  • Nguyen, H. L., Lan, P. D., Thai, N. Q., Nissley, D. A., O'Brien, E. P., & Li, M. S. (2020). Does SARS-CoV-2 bind to human ACE2 more strongly than does SARS-CoV? The Journal of Physical Chemistry B, 124(34), 7336–7347. https://doi.org/10.1021/acs.jpcb.0c04511
  • Peng, C., Zhu, Z., Shi, Y., Wang, X., Mu, K., Yang, Y., Zhang, X., Xu, Z., & Zhu, W. (2020). Computational insights into the conformational accessibility and binding strength of SARS-CoV-2 spike protein to human angiotensin-converting enzyme 2. The Journal of Physical Chemistry Letters, 11(24), 10482–10488. https://doi.org/10.1021/acs.jpclett.0c02958
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pramanik, D., Smith, Z., Kells, A., & Tiwary, P. (2019). Can one trust kinetic and thermodynamic observables from biased metadynamics simulations?: Detailed quantitative benchmarks on millimolar drug fragment dissociation. The Journal of Physical Chemistry B, 123(17), 3672–3678. https://doi.org/10.1021/acs.jpcb.9b01813
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Qiao, B., & Olvera de la Cruz, M. (2020). Enhanced binding of SARS-CoV-2 spike protein to receptor by distal polybasic cleavage sites. ACS Nano, 14(8), 10616–10623. https://doi.org/10.1021/acsnano.0c04798
  • Serapian, S. A., Marchetti, F., Triveri, A., Morra, G., Meli, M., Moroni, E., Sautto, G. A., Rasola, A., & Colombo, G. (2020). The answer lies in the energy: How simple atomistic molecular dynamics simulations may hold the key to epitope prediction on the fully glycosylated SARS-CoV-2 spike protein. The Journal of Physical Chemistry Letters, 11(19), 8084–8093. https://doi.org/10.1021/acs.jpclett.0c02341
  • Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A., & Li, F. (2020). Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 117(21), 11727–11734. https://doi.org/10.1073/pnas.2003138117
  • Shi, R., Shan, C., Duan, X., Chen, Z., Liu, P., Song, J., Song, T., Bi, X., Han, C., Wu, L., Gao, G., Hu, X., Zhang, Y., Tong, Z., Huang, W., Liu, W. J., Wu, G., Zhang, B., Wang, L., … Yan, J. (2020). A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature, 584(7819), 120–124. https://doi.org/10.1038/s41586-020-2381-y
  • Sikora, M., Florian, S. v B., Blanc, E. C., Gecht, M., Covino, R., & Hummer, G. (2021). Computational epitope map of SARS-CoV-2 spike protein. PLoS Computational Biology, 17(4), e1008790. https://doi.org/10.1371/journal.pcbi.1008790
  • Silva de Souza, A., Rivera, J. D., Almeida, V. M., Ge, P., de Souza, R. F., Farah, C. S., Ulrich, H., Marana, S. R., Salinas, R. K., & Guzzo, C. R. (2020). Molecular dynamics reveals complex compensatory effects of ionic strength on the severe acute respiratory syndrome coronavirus 2 spike/human angiotensin-converting enzyme 2 interaction. The Journal of Physical Chemistry Letters, 11(24), 10446–10453. https://doi.org/10.1021/acs.jpclett.0c02602
  • Sitthiyotha, T., & Chunsrivirot, S. (2020). Computational design of 25-mer peptide binders of SARS-CoV-2. The Journal of Physical Chemistry. B, 124(48), 10930–10942. https://doi.org/10.1021/acs.jpcb.0c07890
  • Spinello, A., Saltalamacchia, A., & Magistrato, A. (2020). Is the rigidity of SARS-CoV-2 spike receptor-binding motif the hallmark for its enhanced infectivity? Insights from all-atom simulations. The Journal of Physical Chemistry Letters, 11(12), 4785–4790. https://doi.org/10.1021/acs.jpclett.0c01148
  • Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E. J., Msomi, N., Mlisana, K., von Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A. J., Engelbrecht, S., Van Zyl, G., … de Oliveira, T. (2021). Detection of a SARS-CoV-2 variant of concern in South Africa. Nature, 592(7854), 438–443. https://doi.org/10.1038/s41586-021-03402-9
  • Tiwary, P., & Parrinello, M. (2013). From metadynamics to dynamics. Physical Review Letters, 111(23), 230602. https://doi.org/10.1103/PhysRevLett.111.230602
  • Tortorici, M. A., Beltramello, M., Lempp, F. A., Pinto, D., Dang, H. V., Rosen, L. E., McCallum, M., Bowen, J., Minola, A., Jaconi, S., Zatta, F., De Marco, A., Guarino, B., Bianchi, S., Lauron, E. J., Tucker, H., Zhou, J., Peter, A., Havenar-Daughton, C., … Veesler, D. (2020). Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science (New York, NY), 370(6519), 950–957. https://doi.org/10.1126/science.abe3354
  • Wall, E. C., Wu, M., Harvey, R., Kelly, G., Warchal, S., Sawyer, C., Daniels, R., Hobson, P., Hatipoglu, E., Ngai, Y., Hussain, S., Nicod, J., Goldstone, R., Ambrose, K., Hindmarsh, S., Beale, R., Riddell, A., Gamblin, S., Howell, M., … Bauer, D. L. V. (2021). Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. The Lancet, 397(10292), 2331–2333. https://doi.org/10.1016/S0140-6736(21)01290-3
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, D., Ge, Y., Zhong, B., & Liu, D. (2021). Specific epitopes form extensive hydrogen-bonding networks to ensure efficient antibody binding of SARS-CoV-2: Implications for advanced antibody design. Computational and Structural Biotechnology Journal, 19, 1661–1671. https://doi.org/10.1016/j.csbj.2021.03.021
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020a). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904. https://doi.org/10.1016/j.cell.2020.03.045
  • Wang, Y., Liu, M., & Gao, J. (2020b). Enhanced receptor binding of SARS-CoV-2 through networks of hydrogen-bonding and hydrophobic interactions. Proceedings of the National Academy of Sciences of the United States of America, 117(25), 13967–13974. https://doi.org/10.1073/pnas.2008209117
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY), 367(6483), 1260–1263. https://doi.org/10.1126/science.abb2507
  • Wu, Y., Wang, F., Shen, C., Peng, W., Li, D., Zhao, C., Li, Z., Li, S., Bi, Y., Yang, Y., Gong, Y., Xiao, H., Fan, Z., Tan, S., Wu, G., Tan, W., Lu, X., Fan, C., Wang, Q., … Liu, L. (2020). A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science (New York, NY), 368(6496), 1274–1278. https://doi.org/10.1126/science.abc2241
  • Xiu, S., Dick, A., Ju, H., Mirzaie, S., Abdi, F., Cocklin, S., Zhan, P., & Liu, X. (2020). Inhibitors of SARS-CoV-2 entry: Current and future opportunities. Journal of Medicinal Chemistry, 63(21), 12256–12274. https://doi.org/10.1021/acs.jmedchem.0c00502
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, NY), 367(6485), 1444–14448. https://doi.org/10.1126/science.abb2762
  • Yang, J., Petitjean, S. J. L., Koehler, M., Zhang, Q., Dumitru, A. C., Chen, W., Derclaye, S., Vincent, S. P., Soumillion, P., & Alsteens, D. (2020). Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nature Communications, 11(1), 4541. https://doi.org/10.1038/s41467-020-18319-6
  • Zaki, A. M., van Boheemen, S., Bestebroer, T. M., Osterhaus, A. D. M. E., & Fouchier, R. A. M. (2012). Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. The New England Journal of Medicine, 367(19), 1814–1820. https://doi.org/10.1056/NEJMoa1211721
  • Zhang, Y., & Kutateladze, T. G. (2020). Molecular structure analyses suggest strategies to therapeutically target SARS-CoV-2. Nature Communications, 11(1), 2920. https://doi.org/10.1038/s41467-020-16779-4
  • Zimmerman, M. I., Porter, J. R., Ward, M. D., Singh, S., Vithani, N., Meller, A., Mallimadugula, U. L., Kuhn, C. E., Borowsky, J. H., Wiewiora, R. P., Hurley, M. F. D., Harbison, A. M., Fogarty, C. A., Coffland, J. E., Fadda, E., Voelz, V. A., Chodera, J. D., & Bowman, G. R. (2021). SARS-CoV-2 simulations go exascale to predict dramatic spike opening and cryptic pockets across the proteome. Nature Chemistry, 13(7), 651–659. https://doi.org/10.1038/s41557-021-00707-0
  • Zou, J., Yin, J., Fang, L., Yang, M., Wang, T., Wu, W., Bellucci, M. A., & Zhang, P. (2020). Computational prediction of mutational effects on SARS-CoV-2 binding by relative free energy calculations. Journal of Chemical Information and Modeling, 60(12), 5794–5802. https://doi.org/10.1021/acs.jcim.0c00679

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.