420
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Conformational preferences of triantennary and tetraantennary hybrid N-glycans in aqueous solution: Insights from 20 μs long atomistic molecular dynamic simulations

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 3305-3320 | Received 19 Nov 2021, Accepted 22 Feb 2022, Published online: 09 Mar 2022

References

  • Alibay, I., & Bryce, R. A. (2019). Ring puckering landscapes of glycosaminoglycan-related monosaccharides from molecular dynamics simulations. Journal of Chemical Information and Modeling, 59(11), 4729–4741. https://doi.org/10.1021/acs.jcim.9b00529
  • Alibay, I., Burusco, K. K., Bruce, N. J., & Bryce, R. A. (2018). Identification of rare Lewis oligosaccharide conformers in aqueous solution using enhanced sampling molecular dynamics. The Journal of Physical Chemistry. B, 122(9), 2462–2474. https://doi.org/10.1021/acs.jpcb.7b09841
  • Allen, M. P., & Tildesley, D. J. (2017). Computer simulation of liquids (Vol. 1). Oxford University Press. https://doi.org/10.1093/oso/9780198803195.001.0001
  • Almond, A. (2005). Towards understanding the interaction between oligosaccharides and water molecules. Carbohydrate Research, 340(5), 907–920. https://doi.org/10.1016/j.carres.2005.01.014
  • Almond, A., Petersen, B. O., & Duus, J. Ø. (2004). Oligosaccharides implicated in recognition are predicted to have relatively ordered structures. Biochemistry, 43(19), 5853–5863. https://doi.org/10.1021/bi0354886
  • André, S., Kožár, T., Kojima, S., Unverzagt, C., & Gabius, H.-J. (2009). From structural to functional glycomics: Core substitutions as molecular switches for shape and lectin affinity of N-glycans. Biological Chemistry, 390(7), 557-565. https://doi.org/10.1515/BC.2009.072
  • Angyal, S. (1968). Conformational analysis in carbohydrate chemistry. I. Conformational free energies. The conformations and α: β ratios of aldopyranoses in aqueous solution. Australian Journal of Chemistry, 21(11), 2737–2746. https://doi.org/10.1071/CH9682737
  • Balogh, G., Gyöngyösi, T., Timári, I., Herczeg, M., Borbás, A., Fehér, K., & Kövér, K. E. (2019). Comparison of carbohydrate force fields using gaussian accelerated molecular dynamics simulations and development of force field parameters for heparin-analogue pentasaccharides. Journal of Chemical Information and Modeling, 59(11), 4855–4867. https://doi.org/10.1021/acs.jcim.9b00666
  • Barb, A. W., & Prestegard, J. H. (2011). NMR analysis demonstrates immunoglobulin G N-glycans are accessible and dynamic. Nature Chemical Biology, 7(3), 147–153. https://doi.org/10.1038/nchembio.511
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bernardi, A., Jiménez-Barbero, J., Casnati, A., De Castro, C., Darbre, T., Fieschi, F., Finne, J., Funken, H., Jaeger, K.-E., Lahmann, M., Lindhorst, T. K., Marradi, M., Messner, P., Molinaro, A., Murphy, P. V., Nativi, C., Oscarson, S., Penadés, S., Peri, F., … Imberty, A. (2013). Multivalent glycoconjugates as anti-pathogenic agents. Chemical Society Reviews, 42(11), 4709–4727. https://doi.org/10.1039/c2cs35408j
  • Bock, K., & Thøgersen, H. (1983). Nuclear magnetic resonance spectroscopy in the study of mono- and oligosaccharides. In Annual reports on NMR spectroscopy (13, pp. 1–57). Elsevier. https://doi.org/10.1016/S0066-4103(08)60307-5
  • Burton, D. R., Poignard, P., Stanfield, R. L., & Wilson, I. A. (2012). Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science (New York, N.Y.), 337(6091), 183–186. https://doi.org/10.1126/science.1225416
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chen, M. M., Bartlett, A. I., Nerenberg, P. S., Friel, C. T., Hackenberger, C. P. R., Stultz, C. M., Radford, S. E., & Imperiali, B. (2010). Perturbing the folding energy landscape of the bacterial immunity protein Im7 by site-specific N-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 107(52), 22528–22533. https://doi.org/10.1073/pnas.1015356107
  • Corzana, F., Motawia, M. S., Du Penhoat, C. H., Perez, S., Tschampel, S. M., Woods, R. J., & Engelsen, S. B. (2004). A hydration study of (1->4) and (1->6) linked alpha-glucans by comparative 10 ns molecular dynamics simulations and 500-MHz NMR . Journal of Computational Chemistry, 25(4), 573–586. https://doi.org/10.1002/jcc.10405
  • Cremer, D., & Pople, J. A. (1975). General definition of ring puckering coordinates. Journal of the American Chemical Society, 97(6), 1354–1358. https://doi.org/10.1021/ja00839a011
  • Culyba, E. K., Price, J. L., Hanson, S. R., Dhar, A., Wong, C.-H., Gruebele, M., Powers, E. T., & Kelly, J. W. (2011). Protein native-state stabilization by placing aromatic side chains in N-glycosylated reverse turns. Science (New York, N.Y.), 331(6017), 571–575. https://doi.org/10.1126/science.1198461
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N ⋅log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • de Meirelles, J. L., Nepomuceno, F. C., Peña-García, J., Schmidt, R. R., Pérez-Sánchez, H., & Verli, H. (2020). Current status of carbohydrates information in the protein data bank. Journal of Chemical Information and Modeling, 60(2), 684–699. https://doi.org/10.1021/acs.jcim.9b00874
  • Diniz, A., Dias, J. S., Jiménez-Barbero, J., Marcelo, F., & Cabrita, E. J. (2017). Protein-glycan quinary interactions in crowding environment unveiled by NMR spectroscopy. Chemistry (Weinheim an Der Bergstrasse, Germany), 23(53), 13213–13220. https://doi.org/10.1002/chem.201702800
  • Ellis, C. R., Maiti, B., & Noid, W. G. (2012). Specific and nonspecific effects of glycosylation. Journal of the American Chemical Society, 134(19), 8184–8193. https://doi.org/10.1021/ja301005f
  • Fadda, E., & Woods, R. J. (2010). Molecular simulations of carbohydrates and protein-carbohydrate interactions: Motivation, issues and prospects. Drug Discovery Today, 15(15-16), 596–609. https://doi.org/10.1016/j.drudis.2010.06.001
  • Fogarty, C. A., Harbison, A. M., Dugdale, A. R., & Fadda, E. (2020). How and why plants and human N-glycans are different: Insight from molecular dynamics into the “glycoblocks” architecture of complex carbohydrates. Beilstein Journal of Organic Chemistry, 16, 2046–2056. https://doi.org/10.3762/bjoc.16.171
  • Gabius, H.-J. (2000). Biological information transfer beyond the genetic code: the sugar code. Die Naturwissenschaften, 87(3), 108–121. https://doi.org/10.1007/s001140050687
  • Gabius, H.-J., André, S., Jiménez-Barbero, J., Romero, A., & Solís, D. (2011). From lectin structure to functional glycomics: Principles of the sugar code. Trends in Biochemical Sciences, 36(6), 298–313. https://doi.org/10.1016/j.tibs.2011.01.005
  • Galvelis, R., Re, S., & Sugita, Y. (2017). Enhanced conformational sampling of N-glycans in solution with replica state exchange metadynamics. Journal of Chemical Theory and Computation, 13(5), 1934–1942. https://doi.org/10.1021/acs.jctc.7b00079
  • Goddard, T. D., Huang, C. C., Meng, E. C., Pettersen, E. F., Couch, G. S., Morris, J. H., & Ferrin, T. E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis: UCSF ChimeraX Visualization System. Protein Science : a Publication of the Protein Society, 27(1), 14–25. https://doi.org/10.1002/pro.3235
  • Guillot, A., Dauchez, M., Belloy, N., Jonquet, J., Duca, L., Romier, B., Maurice, P., Debelle, L., Martiny, L., Durlach, V., Baud, S., & Blaise, S. (2016). Impact of sialic acids on the molecular dynamic of bi-antennary and tri-antennary glycans. Scientific Reports, 6(1), 35666. https://doi.org/10.1038/srep35666
  • Guo, Y., Feinberg, H., Conroy, E., Mitchell, D. A., Alvarez, R., Blixt, O., Taylor, M. E., Weis, W. I., & Drickamer, K. (2004). Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nature Structural & Molecular Biology, 11(7), 591–598. https://doi.org/10.1038/nsmb784
  • Guvench, O., Greene, S. N., Kamath, G., Brady, J. W., Venable, R. M., Pastor, R. W., & Mackerell, A. D. (2008). Additive empirical force field for hexopyranose monosaccharides. Journal of Computational Chemistry, 29(15), 2543–2564. https://doi.org/10.1002/jcc.21004
  • Guvench, O., Hatcher, E., Venable, R. M., Pastor, R. W., & MacKerell, A. D. (2009). CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. Journal of Chemical Theory and Computation, 5(9), 2353–2370. https://doi.org/10.1021/ct900242e
  • Hansen, H. S., & Hünenberger, P. H. (2011). A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. Journal of Computational Chemistry, 32(6), 998–1032. https://doi.org/10.1002/jcc.21675
  • Hanson, S. R., Culyba, E. K., Hsu, T.-L., Wong, C.-H., Kelly, J. W., & Powers, E. T. (2009). The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proceedings of the National Academy of Sciences of the United States of America, 106(9), 3131–3136. https://doi.org/10.1073/pnas.0810318105
  • Harbison, A. M., Brosnan, L. P., Fenlon, K., & Fadda, E. (2019). Sequence-to-structure dependence of isolated IgG Fc complex biantennary N-glycans: a molecular dynamics study. Glycobiology, 29(1), 94–103. https://doi.org/10.1093/glycob/cwy097
  • Hardy, B. J. (1997). The glycosidic linkage flexibility and time-scale similarity hypotheses. Journal of Molecular Structure: THEOCHEM, 395-396, 187–200. https://doi.org/10.1016/S0166-1280(96)04866-X
  • Hatcher, E., Guvench, O., & MacKerell, A. D. (2009). CHARMM additive all-atom force field for aldopentofuranoses, methyl-aldopentofuranosides, and fructofuranose. The Journal of Physical Chemistry. B, 113(37), 12466–12476. https://doi.org/10.1021/jp905496e
  • Helenius, A., & Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry, 73(1), 1019–1049. https://doi.org/10.1146/annurev.biochem.73.011303.073752
  • Homans, S. W., Dwek, R. A., Boyd, J., Mahmoudian, M., Richards, W. G., & Rademacher, T. W. (1986). Conformational transitions in N-linked oligosaccharides. Biochemistry, 25(20), 6342–6350. https://doi.org/10.1021/bi00368a076
  • Homans, S. W., Dwek, R. A., & Rademacher, T. W. (1987a). Solution conformations of N-linked oligosaccharides. Biochemistry, 26(21), 6571–6578. https://doi.org/10.1021/bi00395a001
  • Homans, S. W., Dwek, R. A., & Rademacher, T. W. (1987b). Tertiary structure in N-linked oligosaccharides. Biochemistry, 26(20), 6553–6560. https://doi.org/10.1021/bi00394a040
  • Jana, M., & Bandyopadhyay, S. (2012). Conformational flexibility of a protein-carbohydrate complex and the structure and ordering of surrounding water. Physical Chemistry Chemical Physics : PCCP, 14(18), 6628–6638. https://doi.org/10.1039/c2cp24104h
  • Jefferis, R. (2009). Recombinant antibody therapeutics: The impact of glycosylation on mechanisms of action. Trends in Pharmacological Sciences, 30(7), 356–362. https://doi.org/10.1016/j.tips.2009.04.007
  • Jo, S., Qi, Y., & Im, W. (2016). Preferred conformations of N-glycan core pentasaccharide in solution and in glycoproteins. Glycobiology, 26(1), 19–29. https://doi.org/10.1093/glycob/cwv083
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kirschner, K. N., & Woods, R. J. (2001). Solvent interactions determine carbohydrate conformation. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10541–10545. https://doi.org/10.1073/pnas.191362798
  • Kirschner, K. N., Yongye, A. B., Tschampel, S. M., González-Outeiriño, J., Daniels, C. R., Foley, B. L., & Woods, R. J. (2008). GLYCAM06: A generalizable biomolecular force field. Carbohydrates. Journal of Computational Chemistry, 29(4), 622–655. https://doi.org/10.1002/jcc.20820
  • Krauss, I. J. (2016). Antibody recognition of HIV and dengue glycoproteins. Glycobiology, 26(8), 813–819. https://doi.org/10.1093/glycob/cww031
  • Lederkremer, G. Z. (2009). Glycoprotein folding, quality control and ER-associated degradation. Current Opinion in Structural Biology, 19(5), 515–523. https://doi.org/10.1016/j.sbi.2009.06.004
  • Lütteke, T. (2009). Analysis and validation of carbohydrate three-dimensional structures. Acta Crystallographica. Section D, Biological Crystallography, 65(Pt 2), 156–168. https://doi.org/10.1107/S0907444909001905
  • Mayes, H. B., Broadbelt, L. J., & Beckham, G. T. (2014). How sugars pucker: Electronic structure calculations map the kinetic landscape of five biologically paramount monosaccharides and their implications for enzymatic catalysis. Journal of the American Chemical Society, 136(3), 1008–1022. https://doi.org/10.1021/ja410264d
  • Naidoo, K. J., Denysyk, D., & Brady, J. W. (1997). Molecular dynamics simulations of the N-linked oligosaccharide of the lectin from Erythrina corallodendron. Protein Engineering, 10(11), 1249–1261. https://doi.org/10.1093/protein/10.11.1249
  • Nishima, W., Miyashita, N., Yamaguchi, Y., Sugita, Y., & Re, S. (2012). Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution. The Journal of Physical Chemistry. B, 116(29), 8504–8512. https://doi.org/10.1021/jp212550z
  • Perić-Hassler, L., Hansen, H. S., Baron, R., & Hünenberger, P. H. (2010). Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling. Carbohydrate Research, 345(12), 1781–1801. https://doi.org/10.1016/j.carres.2010.05.026
  • Pierce, B. G., Keck, Z.-Y., Lau, P., Fauvelle, C., Gowthaman, R., Baumert, T. F., Fuerst, T. R., Mariuzza, R. A., & Foung, S. K. H. (2016). Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein: Implications for vaccine design. Proceedings of the National Academy of Sciences of the United States of America, 113(45), E6946–E6954. https://doi.org/10.1073/pnas.1614942113
  • Pol-Fachin, L., Verli, H., & Lins, R. D. (2014). Extension and validation of the GROMOS 53A6(GLYC) parameter set for glycoproteins. Journal of Computational Chemistry, 35(29), 2087–2095. https://doi.org/10.1002/jcc.23721
  • Raman, E. P., Guvench, O., & MacKerell, A. D. (2010). CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses. The Journal of Physical Chemistry. B, 114(40), 12981–12994. https://doi.org/10.1021/jp105758h
  • Raman, R., Tharakaraman, K., Sasisekharan, V., & Sasisekharan, R. (2016). Glycan-protein interactions in viral pathogenesis. Current Opinion in Structural Biology, 40, 153–162. https://doi.org/10.1016/j.sbi.2016.10.003
  • Re, S., Miyashita, N., Yamaguchi, Y., & Sugita, Y. (2011). Structural diversity and changes in conformational equilibria of biantennary complex-type N-glycans in water revealed by replica-exchange molecular dynamics simulation. Biophysical Journal, 101(10), L44–46. https://doi.org/10.1016/j.bpj.2011.10.019
  • Re, S., Nishima, W., Miyashita, N., & Sugita, Y. (2012). Conformational flexibility of N-glycans in solution studied by REMD simulations. Biophysical Reviews, 4(3), 179–187. https://doi.org/10.1007/s12551-012-0090-y
  • Re, S., Watabe, S., Nishima, W., Muneyuki, E., Yamaguchi, Y., MacKerell, A. D., & Sugita, Y. (2018). Characterization of conformational ensembles of protonated N-glycans in the gas-phase. Scientific Reports, 8(1), 1644. https://doi.org/10.1038/s41598-018-20012-0
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Roslund, M. U., Klika, K. D., Lehtilä, R. L., Tähtinen, P., Sillanpää, R., & Leino, R. (2004). Conformation of the galactose ring adopted in solution and in crystalline form as determined by experimental and DFT 1H NMR and single-crystal X-ray analysis . The Journal of Organic Chemistry, 69(1), 18–25. https://doi.org/10.1021/jo035400u
  • Roy, R., Ghosh, B., & Kar, P. (2020). Investigating conformational dynamics of Lewis Y oligosaccharides and elucidating blood group dependency of cholera using molecular dynamics. ACS Omega, 5(8), 3932–3942. https://doi.org/10.1021/acsomega.9b03398
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sattelle, B. M., & Almond, A. (2011). Is N-acetyl-D-glucosamine a rigid 4C1 chair? Glycobiology, 21(12), 1651–1662. https://doi.org/10.1093/glycob/cwr101
  • Sayers, E. W., & Prestegard, J. H. (2000). Solution conformations of a trimannoside from nuclear magnetic resonance and molecular dynamics simulations. Biophysical Journal, 79(6), 3313–3329. https://doi.org/10.1016/S0006-3495(00)76563-5
  • Schwarz, F., & Aebi, M. (2011). Mechanisms and principles of N-linked protein glycosylation. Current Opinion in Structural Biology, 21(5), 576–582. https://doi.org/10.1016/j.sbi.2011.08.005
  • Shanker, S., Hu, L., Ramani, S., Atmar, R. L., Estes, M. K., & Venkataram Prasad, B. V. (2017). Structural features of glycan recognition among viral pathogens. Current Opinion in Structural Biology, 44, 211–218. https://doi.org/10.1016/j.sbi.2017.05.007
  • Shcherbakov, D. N., Bakulina, A. Y., Karpenko, L. I., & Ilyichev, A. A. (2015). Broadly neutralizing antibodies against HIV-1 As a novel aspect of the immune response. Acta Naturae, 7(4), 11–21.
  • Shi, X., & Elliott, R. M. (2004). Analysis of N-linked glycosylation of hantaan virus glycoproteins and the role of oligosaccharide side chains in protein folding and intracellular trafficking. Journal of Virology, 78(10), 5414–5422. https://doi.org/10.1128/JVI.78.10.5414-5422.2004
  • Shivatare, V. S., Shivatare, S. S., Lee, C.-C D., Liang, C.-H., Liao, K.-S., Cheng, Y.-Y., Saidachary, G., Wu, C.-Y., Lin, N.-H., Kwong, P. D., Burton, D. R., Wu, C.-Y., & Wong, C.-H. (2018). Unprecedented role of hybrid N-glycans as ligands for HIV-1 broadly neutralizing antibodies. Journal of the American Chemical Society, 140(15), 5202–5210. https://doi.org/10.1021/jacs.8b00896
  • Shukla, R. K., & Tiwari, A. (2011). Carbohydrate molecules: An expanding horizon in drug delivery and biomedicine. Critical Reviews in Therapeutic Drug Carrier Systems, 28(3), 255–292. https://doi.org/10.1615/critrevtherdrugcarriersyst.v28.i3.20
  • Slaney, A. M., Wright, V. A., Meloncelli, P. J., Harris, K. D., West, L. J., Lowary, T. L., & Buriak, J. M. (2011). Biocompatible carbohydrate-functionalized stainless steel surfaces: A new method for passivating biomedical implants. ACS Applied Materials & Interfaces, 3(5), 1601–1612. https://doi.org/10.1021/am200158y
  • Slynko, V., Schubert, M., Numao, S., Kowarik, M., Aebi, M., & Allain, F. H.-T. (2009). NMR structure determination of a segmentally labeled glycoprotein using in vitro glycosylation. Journal of the American Chemical Society, 131(3), 1274–1281. https://doi.org/10.1021/ja808682v
  • Solá, R. J., Rodríguez-Martínez, J. A., & Griebenow, K. (2007). Modulation of protein biophysical properties by chemical glycosylation: Biochemical insights and biomedical implications. Cellular and Molecular Life Sciences : CMLS, 64(16), 2133–2152. https://doi.org/10.1007/s00018-007-6551-y
  • Suzuki, T., Kajino, M., Yanaka, S., Zhu, T., Yagi, H., Satoh, T., Yamaguchi, T., & Kato, K. (2017). Conformational analysis of a high-mannose-type oligosaccharide displaying glucosyl determinant recognised by molecular chaperones using NMR-validated molecular dynamics simulation. Chembiochem : A European Journal of Chemical Biology, 18(4), 396–401. https://doi.org/10.1002/cbic.201600595
  • Turupcu, A., Blaukopf, M., Kosma, P., & Oostenbrink, C. (2019). Molecular conformations of Di-, Tri-, and Tetra-α-(2→8)-linked sialic acid from NMR spectroscopy and MD simulations. International Journal of Molecular Sciences, 21(1), 30. https://doi.org/10.3390/ijms21010030
  • Valverde, P., Ardá, A., Reichardt, N.-C., Jiménez-Barbero, J., & Gimeno, A. (2019). Glycans in drug discovery. MedChemComm, 10(10), 1678–1691. https://doi.org/10.1039/c9md00292h
  • Valverde, P., Quintana, J. I., Santos, J. I., Ardá, A., & Jiménez-Barbero, J. (2019). Novel NMR avenues to explore the conformation and interactions of glycans. ACS Omega, 4(9), 13618–13630. https://doi.org/10.1021/acsomega.9b01901
  • Watanabe, T., Yagi, H., Yanaka, S., Yamaguchi, T., & Kato, K. (2021). Comprehensive characterization of oligosaccharide conformational ensembles with conformer classification by free-energy landscape via reproductive kernel Hilbert space. Physical Chemistry Chemical Physics : PCCP, 23(16), 9753–9760. https://doi.org/10.1039/d0cp06448c
  • Wehle, M., Vilotijevic, I., Lipowsky, R., Seeberger, P. H., Varon Silva, D., & Santer, M. (2012). Mechanical compressibility of the glycosylphosphatidylinositol (GPI) anchor backbone governed by independent glycosidic linkages. Journal of the American Chemical Society, 134(46), 18964–18972. https://doi.org/10.1021/ja302803r
  • Weller, C. T., Lustbader, J., Seshadri, K., Brown, J. M., Chadwick, C. A., Kolthoff, C. E., Ramnarain, S., Pollak, S., Canfield, R., & Homans, S. W. (1996). Structural and conformational analysis of glycan moieties in situ on isotopically 13C, 15N-enriched recombinant human chorionic gonadotropin. Biochemistry, 35(27), 8815–8823. https://doi.org/10.1021/bi960432f
  • Werz, D. B., Ranzinger, R., Herget, S., Adibekian, A., von der Lieth, C.-W., & Seeberger, P. H. (2007). Exploring the structural diversity of mammalian carbohydrates (“Glycospace”) by statistical databank analysis. ACS Chemical Biology, 2(10), 685–691. https://doi.org/10.1021/cb700178s
  • Woods, R. J. (2018). Predicting the structures of glycans, glycoproteins, and their complexes. Chemical Reviews, 118(17), 8005–8024. https://doi.org/10.1021/acs.chemrev.8b00032
  • Woods, R. J., Pathiaseril, A., Wormald, M. R., Edge, C. J., & Dwek, R. A. (1998). The high degree of internal flexibility observed for an oligomannose oligosaccharide does not alter the overall topology of the molecule. European Journal of Biochemistry, 258(2), 372–386. https://doi.org/10.1046/j.1432-1327.1998.2580372.x
  • Wormald, M. R., Petrescu, A. J., Pao, Y.-L., Glithero, A., Elliott, T., & Dwek, R. A. (2002). Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chemical Reviews, 102(2), 371–386. https://doi.org/10.1021/cr990368i
  • Wu, E. L., Engström, O., Jo, S., Stuhlsatz, D., Yeom, M. S., Klauda, J. B., Widmalm, G., & Im, W. (2013). Molecular dynamics and NMR spectroscopy studies of E. coli lipopolysaccharide structure and dynamics. Biophysical Journal, 105(6), 1444–1455. https://doi.org/10.1016/j.bpj.2013.08.002
  • Yamaguchi, Y., Nishima, W., Re, S., & Sugita, Y. (2012). Confident identification of isomeric N-glycan structures by combined ion mobility mass spectrometry and hydrophilic interaction liquid chromatography. Rapid Communications in Mass Spectrometry : RCM, 26(24), 2877–2884. https://doi.org/10.1002/rcm.6412
  • Yang, M., & MacKerell, A. D. (2015). Conformational sampling of oligosaccharides using hamiltonian replica exchange with two-dimensional dihedral biasing potentials and the weighted histogram analysis method (WHAM). Journal of Chemical Theory and Computation, 11(2), 788–799. https://doi.org/10.1021/ct500993h
  • Zhang, Y., Yamaguchi, T., & Kato, K. (2013). New NMR tools for characterizing the dynamic conformations and interactions of oligosaccharides. Chemistry Letters, 42(12), 1455–1462. https://doi.org/10.1246/cl.130789

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.