142
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Monosaccharide induced temporal delay in cholesterol self-aggregation

ORCID Icon & ORCID Icon
Pages 3205-3217 | Received 29 Oct 2021, Accepted 19 Feb 2022, Published online: 07 Mar 2022

References

  • Aiman, U., Najmi, A., & Khan, R. (2014). Statin induced diabetes and its clinical implications. Journal of Pharmacology & Pharmacotherapeutics, 5(3), 181–185. https://doi.org/10.4103/0976-500X.136097
  • Baier, C., Fantini, J., & Barrantes, F. (2011). Disclosure of cholesterol recognition motifs in trans-membrane domains of the human nicotinic acetylcholine receptor. Scientific Reports, 1, 69.
  • Bonomi, M., Branduardi, D., Bussi, G., Camilloni, C., Provasi, D., Raiteri, P., Donadio, D., Marinelli, F., Pietrucci, F., Broglia, R., & Parrinello, M. (2009). PLUMED: A portable plugin for free-energy calculations with molecular dynamics. Computer Physics Communications, 180(10), 1961–1972. https://doi.org/10.1016/j.cpc.2009.05.011
  • Brown, M. S., & Goldstein, J. L. (1986). A receptor-mediated pathway for cholesterol homeostasis. Science, 232(4746), 34–47. https://doi.org/10.1126/science.3513311
  • Buitrago, C. F., Bolintineanu, D. S., Seitz, M. E., Opper, K. L., Wagener, K. B., Stevens, M. J., Frischknecht, A. L., & Winey, K. I. (2015). Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers. Macromolecules, 48(4), 1210–1220. https://doi.org/10.1021/ma5022117
  • Bux, K., & Moin, S. T. (2020). Solvation of cholesterol in different solvents: A molecular dynamics simulation study. Physical Chemistry Chemical Physics, 22(3), 1154–1167.
  • Carlsson, J., & Åqvist, J. (2005). Absolute and relative entropies from computer simulation with applications to ligand binding. The Journal of Physical Chemistry. B, 109(13), 6448–6456. PMID: 16851719. https://doi.org/10.1021/jp046022f
  • Carlsson, J., & Åqvist, J. (2006). Calculations of solute and solvent entropies from molecular dynamics simulations. Physical Chemistry Chemical Physics, 8(46), 5385–5395.
  • Chakraborty, S., Doktorova, M., Molugu, T. R., Heberle, F. A., Scott, H. L., Dzikovski, B., Nagao, M., Stingaciu, L.-R., Standaert, R. F., Barrera, F. N., Katsaras, J., Khelashvili, G., Brown, M. F., & Ashkar, R. (2020). How cholesterol stiffens unsaturated lipid membranes. Proceedings of the National Academy of Sciences of the United States of America, 117(36), 21896–21905. https://doi.org/10.1073/pnas.2004807117
  • Cohen, D. E. (2008). Balancing cholesterol synthesis and absorption in the gastrointestinal tract. Journal of Clinical Lipidology, 2(2), S1–S3. https://doi.org/10.1016/j.jacl.2008.01.004
  • Cromie, S., Del Pópolo, M., & Ballone, P. (2009). Amphiphilic character and aggregation properties of small cholesterol islands on water: A simulation study. The Journal of Physical Chemistry B, 113(14), 4674–4687. https://doi.org/10.1021/jp8084759
  • De Maeyer, L., Trachimow, C., & Kaatze, U. (1998). Entropy-driven micellar aggregation. The Journal of Physical Chemistry B, 102, 8480–8491.
  • Elshourbagy, N. A., Meyers, H. V., & Abdel-Meguid, S. S. (2014). Cholesterol: The good, the bad, and the ugly – therapeutic targets for the treatment of dyslipidemia. Medical Principles and Practice, 23(2), 99–111. https://doi.org/10.1159/000356856
  • Epand, R., Thomas, A., Brasseur, R., Vishwanathan, S., Hunter, E., & Epand, R. (2006). Juxtamembrane protein segments that contribute to recruitment of cholesterol into domains. Biochemistry, 45(19), 6105–6114. https://doi.org/10.1021/bi060245+
  • Fantini, J., & Barrantes, F. (2013). How cholesterol interacts with membrane proteins: An exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Frontiers in Physiology, 4, 31. https://doi.org/10.3389/fphys.2013.00031
  • Giberti, F., Salvalaglio, M., & Parrinello, M. (2015). Metadynamics studies of crystal nucleation. IUCrJ, 2(Pt 2), 256–266. https://doi.org/10.1107/S2052252514027626
  • Grundy, M., Quint, J., Rieder, A., Ballance, S., Dreiss, C., Cross, K., Gray, R., Bajka, B., Butterworth, P., Ellis, P., & Wilde, P. (2017). The impact of oat structure and β-glucan on in vitro lipid digestion. Journal of Functional Foods, 38(Pt A), 378–388. https://doi.org/10.1016/j.jff.2017.09.011
  • Guinier, A., & Fournet, G. (1955). Small-angle scattering of X-rays. New York: Wiley
  • Haberland, M., & Reynolds, J. (1973). Self-association of cholesterol in aqueous solution. Proceedings of the National Academy of Sciences of the United States of America, 70(8), 2313–2316. https://doi.org/10.1073/pnas.70.8.2313
  • Harris, J., Epps, D., Davio, S., & Kézdy, F. (1995). Evidence for transbilayer, tail-to-tailcholesterol dimers in dipalmitoylglycerophos-phocholineliposomes. Biochemistry, 34(11), 3851–3857. https://doi.org/10.1021/bi00011a043
  • Hayakawa, T., & Hirai, M. (2003). Bilayer structure of ganglioside/cholesterol mixed system in the presence of Ca2. Journal of Applied Crystallography, 36(3), 489–493. https://doi.org/10.1107/S0021889803005090
  • Hazra, R., & Roy, D. (2021). Distinctive weak interactions underlie diverse nucleation and small-angle scattering behavior of aqueous cholesterol, cholesteryl hemisuccinate, and glycocholic acid. The Journal of Physical Chemistry B, 125(2), 612–624. https://doi.org/10.1021/acs.jpcb.0c08931
  • He, F., Woods, C. E., Litowski, J. R., Roschen, L. A. Gadgil, H. S, Razinkov, V. I., & Kerwin, B. A. (2011). Effect of sugar molecules on the viscosity of high concentration monoclonal antibody solutions. Pharmaceutical Research, 28, 1552–1560. https://doi.org/10.1007/s11095-011-0388-7
  • Hong, T., Iwashita, K., & Shiraki, K. (2018). Viscosity control of protein solution by small solutes: A review. Current Protein & Peptide Science, 19(8), 746–758. https://doi.org/10.2174/1389203719666171213114919
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/physreva.31.1695
  • Huang, J. (2002). Exploration of molecular interactions in cholesterol superlattices: Effect of multibody interactions. Biophysical Journal, 83(2), 1014–1025. https://doi.org/10.1016/S0006-3495(02)75227-2
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jesch, E., & Carr, T. (2017). Food ingredients that inhibit cholesterol absorption. Preventive Nutrition and Food Science, 22(2), 67–80.
  • Jorgensen, W. L., & Jenson, C. (1998). Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: Seeking temperatures of maximum density. Journal of Computational Chemistry, 19(10), 1179–1186. https://doi.org/10.1002/(SICI)1096-987X(19980730)19:10<1179::AID-JCC6>3.0.CO;2-J
  • Junker, N. O., Vaghefikia, F., Albarghash, A., Höfig, H., Kempe, D., Walter, J., Otten, J., Pohl, M., Katranidis, A., Wiegand, S., & Fitter, J. (2019). Impact of molecular crowding on translational mobility and conformational properties of biological macromolecules. The Journal of Physical Chemistry. B, 123(21), 4477–4486. https://doi.org/10.1021/acs.jpcb.9b01239
  • Kalé, L., Skeel, R., Bhandarkar, M., Brunner, R., Gursoy, A., Krawetz, N., Phillips, J., Shinozaki, A., Varadarajan, K., & Schulten, K. (1999). NAMD2: Greater scalability for parallel molecular dynamics. Journal of Computational Physics, 151(1), 283–312. https://doi.org/10.1006/jcph.1999.6201
  • Klauda, J. B., Venable, R. M., Freites, J. A., O'Connor, J. W., Tobias, D. J., Mondragon-Ramirez, C., Vorobyov, I., MacKerell, A. D., & Pastor, R. W. (2010). Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. The Journal of Physical Chemistry. B, 114(23), 7830–7843.
  • Korolenko, T., Johnston, T., Machova, E., Bgatova, N., Lykov, A., Goncharova, N., Nescakova, Z., Shintyapina, A., Maiborodin, I., & Karmatskikh, O. (2018). Hypolipidemic effect of mannans from C. albicans serotypes A and B in acute hyperlipidemia in mice. International Journal of Biological Macromolecules, 107, 2385–2394. https://doi.org/10.1016/j.ijbiomac.2017.10.111
  • Kruit, J. K., Groen, A. K., van Berkel, T. J., & Kuipers, F. (2006). Emerging roles of the intestine in control of cholesterol metabolism. World Journal of Gastroenterology, 12(40), 6429–6439. https://doi.org/10.3748/wjg.v12.i40.6429
  • Kuznetsova, I., Turoverov, K., Uversky, V., (2014). What macromolecular crowding can do to a protein. International Journal of Molecular Sciences., 102, 23090–23140.
  • Lascombe, M.-B., Ponchet, M., Venard, P., Milat, M.-L., Blein, J.-P., & Prangé, T. (2002). The 1.45 A resolution structure of the cryptogein-cholesterol complex: A close-up view of a sterol carrier protein (SCP) active site. Acta Crystallographica. Section D, Biological Crystallography, 58(Pt 9), 1442–1447. https://doi.org/10.1107/S0907444902011745
  • Leitersdorf, E. (2001). Cholesterol absorption inhibition: Filling an unmet need in lipid-lowering management. European Heart Journal Supplements, 3, E17–E23. https://doi.org/10.1016/S1520-765X(01)90108-7
  • Lim, J. B., Rogaski, B., & Klauda, J. B. (2012). Update of the cholesterol force field parameters in CHARMM. The Journal of Physical Chemistry. B, 116(1), 203–210. https://doi.org/10.1021/jp207925m
  • Maric, S., Lind, T. K., Lyngsø, J., Cárdenas, M., & Pedersen, J. S. (2017). Modeling small-angle X-ray scattering data for low-density lipoproteins: Insights into the fatty core packing and phase transition. ACS Nano, 11(1), 1080–1090. https://doi.org/10.1021/acsnano.6b08089
  • Massey, J. (1998). Effect of cholesteryl hemisuccinate on the interfacial properties of phosphatidylcholine bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1415(1), 193–204. https://doi.org/10.1016/S0005-2736(98)00194-1
  • Miermont, A., Waharte, F., Hu, S., McClean, M. N., Bottani, S., Léon, S., & Hersen, P. (2013). Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5725–5730. https://doi.org/10.1073/pnas.1215367110
  • Mikkelsen, M. S., Cornali, S. B., Jensen, M. G., Nilsson, M., Beeren, S. R., & Meier, S. (2014). Probing interactions between β-glucan and bile salts at atomic detail by ¹H-¹³C NMR assays. Journal of Agricultural and Food Chemistry, 62(47), 11472–11478. https://doi.org/10.1021/jf504352w
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • North, B., Katz, S., & Small, D. (1978). The dissolution of cholesterol monohydrate crystals in atherosclerotic plaque lipids. Atherosclerosis, 30(3), 211–217. https://doi.org/10.1016/0021-9150(78)90047-3
  • Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511–519. https://doi.org/10.1063/1.447334
  • Nutescu, E. A., & Shapiro, N. L. (2003). Ezetimibe: A selective cholesterol absorption inhibitor. Pharmacotherapy, 23, 1463–1474.
  • Othman, R., Moghadasian, M., & Jones, P. (2011). Cholesterol-lowering effects of oat b-glucan. Nutrition Reviews, 69(6), 299–309. https://doi.org/10.1111/j.1753-4887.2011.00401.x
  • Park, S.-J., Lee, J., Qi, Y., Kern, N. R., Lee, H. S., Jo, S., Joung, I., Joo, K., Lee, J., & Im, W. (2019). CHARMM-GUI Glycan Modeler for modeling and simulation of carbohydrates and glycoconjugates. Glycobiology, 29(4), 320–331. https://doi.org/10.1093/glycob/cwz003
  • Patel, C., Noble, S., Weatherly, G., Tripathy, A., Winzor, D., & Pielak, G. (2002). Effects of molecular crowding by saccharides on alpha-chymotrypsin dimerization. Protein Science, 11(5), 997–1003.
  • Peesapati, S., Sajeevan, K., Patel, S., & Roy, D. (2021). Relation between glycosidic linkage, structure and dynamics of α- and β-glucans in water . Biopolymers, 112(5), e23423. https://doi.org/10.1002/bip.23423
  • Phillips, J., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802.
  • Putnam, C. D. (2016). Guinier peak analysis for visual and automated inspection of small-angle X-ray scattering data. Journal of Applied Crystallography, 49(Pt 5), 1412–1419. https://doi.org/10.1107/S1600576716010906
  • Putnam, C. D., Hammel, M., Hura, G. L., & Tainer, J. A. (2007). X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution. Quarterly Reviews of Biophysics, 40(3), 191–285. https://doi.org/10.1017/S0033583507004635
  • Rose, I., Hanson, K., Wilkinson, K., & Wimmer, M. (1980). A suggestion for naming faces of ring compounds. Proceedings of the National Academy of Sciences of the United States of America, 77(5), 2439–2441. https://doi.org/10.1073/pnas.77.5.2439
  • Rosenthal, R. (2000). Effectiveness of altering serum cholesterol levels without drugs. Proceedings (Baylor University. Medical Center), 13(4), 351–355. https://doi.org/10.1080/08998280.2000.11927704
  • Salvalaglio, M., Giberti, F., & Parrinello, M. (2014). 1,3,5-Tris(4-bromophenyl)benzene prenucleation clusters from metadynamics. Acta Crystallographica. Section C, Structural Chemistry, 70(Pt 2), 132–136.
  • Salvalaglio, M., Perego, C., Giberti, F., Mazzotti, M., & Parrinello, M. (2015). Molecular-dynamics simulations of urea nucleation from aqueous solution. Proceedings of the National Academy of Sciences of the United States of America, 112(1), E6–E14. https://doi.org/10.1073/pnas.1421192111
  • Salvalaglio, M., Vetter, T., Giberti, F., Mazzotti, M., & Parrinello, M. (2012). Uncovering molecular details of urea crystal growth in the presence of additives. Journal of the American Chemical Society, 134(41), 17221–17233. https://doi.org/10.1021/ja307408x
  • Sletmoen, M., & Stokke, B. (2008). Higher order structure of (1,3)-beta-D-glucans and its influence on their biological activities and complexation abilities. Biopolymers, 89(4), 310–321. https://doi.org/10.1002/bip.20920
  • Soliman, G. (2018). Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients, 10(6), 780. https://doi.org/10.3390/nu10060780
  • Sreij, R., Dargel, C., Schweins, R., Prévost, S., Dattani, R., & Hellweg, T. (2019). Aescin-cholesterol complexes in DMPC model membranes: A DSC and temperature-dependent scattering study. Scientific Reports, 9, 5542.
  • Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C., & Bussi, G. (2014). Plumed 2: New feathers for an old bird. Computer Physics Communications., 185(2), 604–613. https://doi.org/10.1016/j.cpc.2013.09.018
  • Tribello, G. A., Giberti, F., Sosso, G. C., Salvalaglio, M., & Parrinello, M. (2017). Analyzing and driving cluster formation in atomistic simulations. Journal of Chemical Theory and Computation, 13(3), 1317–1327. https://doi.org/10.1021/acs.jctc.6b01073
  • van Heek, M., Farley, C., Compton, D., Hoos, L., Alton, K., Sybertz, E., & Davis, H. J. (2000). Comparison of the activity and disposition of the novel cholesterol absorption inhibitor, SCH58235, and its glucuronide, SCH60663. British Journal of Pharmacology, 129(8), 1748–1754.
  • Vogel, A., Scheidt, H. A., Baek, D. J., Bittman, R., & Huster, D. (2016). Structure and dynamics of the aliphatic cholesterol side chain in membranes as studied by 2H NMR spectroscopy and molecular dynamics simulation. Physical Chemistry Chemical Physics, 18(5), 3730–3738. https://doi.org/10.1039/C5CP05084G
  • Waasmaier, D., & Kirfel, A. (1995). New analytical scattering-factor functions for free atoms and ions. Acta Crystallographica Section A Foundations of Crystallography, 51(3), 416–431. https://doi.org/10.1107/S0108767394013292
  • Wang, D. Q. (2007). Regulation of intestinal cholesterol absorption. Annual Review of Physiology, 69, 221–248. https://doi.org/10.1146/annurev.physiol.69.031905.160725
  • Wang, Q., & Ellis, P. R. (2014). Oat β-glucan: Physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties. British Journal of Nutrition, 112(S2), S4–S13. https://doi.org/10.1017/S0007114514002256
  • Wang, X., Storsley, J., Thandapilly, S. J., & Ames, N. (2016). Effects of processing, cultivar, and environment on the physicochemical properties of oat beta-glucan. Cereal Chemistry Journal, 93(4), 402–408. https://doi.org/10.1094/CCHEM-12-15-0245-R
  • Zielke, C., Kosik, O., Ainalem, M.-L., Lovegrove, A., Stradner, A., & Nilsson, L. (2017). Characterization of cereal beta-glucan extracts from oat and barley and quantification of proteinaceous matter. PLoS One, 12(2), e0172034. https://doi.org/10.1371/journal.pone.0172034
  • Zielke, C., Lu, Y., Poinsot, R., & Nilsson, L. (2018). Interaction between cereal β-glucan and proteins in solution and at interfaces . Colloids and Surfaces. B, Biointerfaces, 162, 256–264. https://doi.org/10.1016/j.colsurfb.2017.11.059
  • Zimmer, S., Grebe, A., Bakke, S. S., Bode, N., Halvorsen, B., Ulas, T., Skjelland, M., De Nardo, D., Labzin, L. I., Kerksiek, A., Hempel, C., Heneka, M. T., Hawxhurst, V., Fitzgerald, M. L., Trebicka, J., Björkhem, I., Gustafsson, J.-Å., Westerterp, M., Tall, A. R., … Latz, E. (2016). Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Science Translational Medicine, 8(333), 333ra50. https://doi.org/10.1126/scitranslmed.aad6100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.