516
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In silico identification of small molecule protein-protein interaction inhibitors: targeting hotspot regions at the interface of MXRA8 and CHIKV envelope protein

&
Pages 3349-3367 | Received 27 Dec 2021, Accepted 23 Feb 2022, Published online: 11 Mar 2022

References

  • Acpype Server. http://bio2byte.be/acpype/
  • Arkin, M. R., Tang, Y., & Wells, J. A. (2014). Small-molecule inhibitors of protein-protein interactions: Progressing toward the reality. Chemistry & Biology, 21(9), 1102–1114. https://doi.org/10.1016/j.chembiol.2014.09.001
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1–3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bojadzic, D., & Buchwald, P. (2018). Toward small-molecule inhibition of protein-protein interactions: general aspects and recent progress in targeting costimulatory and coinhibitory (immune checkpoint) interactions. Current Topics in Medicinal Chemistry, 18(8), 674–699. https://doi.org/10.2174/1568026618666180531092503
  • Chikungunya fact sheet. https://www.who.int/news-room/fact-sheets/detail/chikungunya.
  • de Chassey, B., Meyniel-Schicklin, L., Vonderscher, J., André, P., & Lotteau, V. (2014). Virus-host interactomics: New insights and opportunities for antiviral drug discovery. Genome Medicine, 6(11), 115–114. https://doi.org/10.1186/s13073-014-0115-1
  • Deeba, F., Malik, M. Z., Naqvi, I. H., Haider, M. S. H., Shafat, Z., Sinha, P., Ishrat, R., Ahmed, A., & Parveen, S. (2017). Potential entry inhibitors of the envelope protein (E2) of Chikungunya virus: in silico structural modeling, docking and molecular dynamic studies. VirusDisease, 28(1), 39–49. https://doi.org/10.1007/s13337-016-0356-2
  • Delogu, I., Pastorino, B., Baronti, C., Nougairède, A., Bonnet, E., & de Lamballerie, X. (2011). In vitro antiviral activity of arbidol against Chikungunya virus and characteristics of a selected resistant mutant. Antiviral Research, 90(3), 99–107. https://doi.org/10.1016/j.antiviral.2011.03.182
  • Epik | Schrödinger. https://www.schrodinger.com/products/epik
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Geographic Distribution | Chikungunya virus | CDC. https://www.cdc.gov/chikungunya/geo/index.html
  • Gérardin, P., Barau, G., Michault, A., Bintner, M., Randrianaivo, H., Choker, G., Lenglet, Y., Touret, Y., Bouveret, A., Grivard, P., Roux, K. L., Blanc, S., Schuffenecker, I., Couderc, T., Arenzana-Seisdedos, F., Lecuit, M., & Robillard, P.-Y. (2008). Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Réunion. PLoS Medicine, 5(3), e60–0423. https://doi.org/10.1371/journal.pmed.0050060
  • Glide | Schrödinger. https://www.schrodinger.com/products/glide
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Houston, D. R., & Walkinshaw, M. D. (2013). Consensus docking: Improving the reliability of docking in a virtual screening context. Journal of Chemical Information and Modeling, 53(2), 384–390. https://doi.org/10.1021/ci300399w
  • Hu, Z., Ma, B., Wolfson, H., & Nussinov, R. (2000). Conservation of polar residues as hot spots at protein interfaces. Proteins: Structure, Function, and Genetics, 39(4), 331–342. https://doi.org/10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A
  • Irwin, J. J., & Shoichet, B. K. (2005). ZINC − a free database of commercially available compounds for virtual screening. Journal of Chemical Information and Modeling, 45(1), 177–182.
  • Jin, X., Lee, K., Kim, N. H., Kim, H. S., Yook, J. I., Choi, J., & No, K. T. (2018). Natural products used as a chemical library for protein-protein interaction targeted drug discovery. Journal of Molecular Graphics & Modelling, 79, 46–58. https://doi.org/10.1016/j.jmgm.2017.10.015
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Jung, Y.-K., Jin, J.-S., Jeong, J.-H., Kim, H.-N., Park, N.-R., & Choi, J.-Y. (2008). DICAM, a novel dual immunoglobulin domain containing cell adhesion molecule interacts with alphavbeta3 integrin. Journal of Cellular Physiology, 216(3), 603–614. https://doi.org/10.1002/jcp.21438
  • Khan, M., Santhosh, S. R., Tiwari, M., Lakshmana Rao, P. V., & Parida, M. (2010). Assessment of in vitro prophylactic and therapeutic efficacy of chloroquine against chikungunya virus in vero cells. Journal of Medical Virology, 82(5), 817–824. https://doi.org/10.1002/jmv.21663
  • Kielian, M. (2006). Class II virus membrane fusion proteins. Virology, 344(1), 38–47. https://doi.org/10.1016/j.virol.2005.09.036
  • Kielian, M., Chanel-Vos, C., & Liao, M. (2010). Alphavirus entry and membrane fusion. Viruses, 2(4), 796–825. https://doi.org/10.3390/v2040796
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kuo, S.-C., Chen, Y.-J., Wang, Y.-M., Tsui, P.-Y., Kuo, M.-D., Wu, T.-Y., & Lo, S. J. (2012). Cell-based analysis of Chikungunya virus E1 protein in membrane fusion. Journal of Biomedical Science, 19, 44 https://doi.org/10.1186/1423-0127-19-44
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Li, L., Jose, J., Xiang, Y., Kuhn, R. J., & Rossmann, M. G. (2010). Structural changes of envelope proteins during alphavirus fusion. Nature, 468(7324), 705–708. https://doi.org/10.1038/nature09546
  • Li, X.-F., Jiang, T., Deng, Y.-Q., Zhao, H., Yu, X.-D., Ye, Q., Wang, H.-J., Zhu, S.-Y., Zhang, F.-C., Qin, E.-D., & Qin, C.-F. (2012). Complete genome sequence of a Chikungunya virus isolated in Guangdong, China. Journal of Virology, 86(16), 8904–8905. https://doi.org/10.1128/JVI.01289-12
  • LigPrep | Schrödinger. https://www.schrodinger.com/products/ligprep
  • Liu, X., Shi, D., Zhou, S., Liu, H., Liu, H., & Yao, X. (2018). Molecular dynamics simulations and novel drug discovery. Expert Opinion on Drug Discovery, 13(1), 23–37. https://doi.org/10.1080/17460441.2018.1403419
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Loregian, A., Marsden, H. S., & Palù, G. (2002). Protein-protein interactions as targets for antiviral chemotherapy. Reviews in Medical Virology 12(4), 239–262. https://doi.org/10.1002/rmv.356
  • Mahoney, M. W., & Jorgensen, W. L. (2000). A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. Journal of Chemical Physics, 112(20), 8910–8922. https://doi.org/10.1063/1.481505
  • Moizéis, R. N. C., Fernandes, T. A. A. D. M., Guedes, P. M. D. M., Pereira, H. W. B., Lanza, D. C. F., Azevedo, J. W. V. D., Galvão, J. M. D. A., & Fernandes, J. V. (2018). Chikungunya fever: a threat to global public health. Pathogens and Global Health, 112(4), 182–194. https://doi.org/10.1080/20477724.2018.1478777
  • Moller-Tank, S., & Maury, W. (2014). Phosphatidylserine receptors: Enhancers of enveloped virus entry and infection. Virology, 468–470, 565–580. https://doi.org/10.1016/j.virol.2014.09.009
  • Mounce, B. C., Cesaro, T., Carrau, L., Vallet, T., & Vignuzzi, M. (2017). Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Research, 142, 148–157. https://doi.org/10.1016/j.antiviral.2017.03.014
  • Protein Preparation Wizard | Schrödinger. https://www.schrodinger.com/protein-preparation-wizard
  • Robinson, M. C. (1955). An epidemic of virus disease in Southern Province, Tanganyika territory, in 1952–1953. Transactions of the Royal Society of Tropical Medicine & Hygiene, 49(1), 28–32. https://doi.org/10.1016/0035-9203(55)90080-8
  • Rothan, H. A., Bahrani, H., Mohamed, Z., Teoh, T. C., Shankar, E. M., Rahman, N. A., & Yusof, R. (2015). A combination of doxycycline and ribavirin alleviated chikungunya infection. PLoS One, 10(5), e0126360. https://doi.org/10.1371/journal.pone.0126360
  • Schnierle, B. S. (2019). Cellular attachment and entry factors for chikungunya virus. Viruses, 11(11), 1078–1079. https://doi.org/10.3390/v11111078
  • Schrödinger, L., & DeLano, W. (2020). PyMOL. Retrieved from http://www.pymol.org/pymol
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK( a ) prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Silva, L. A., Khomandiak, S., Ashbrook, A. W., Weller, R., Heise, M. T., Morrison, T. E., & Dermody, T. S. (2014). A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. Journal of Virology, 88(5), 2385–2397. https://doi.org/10.1128/JVI.03116-13
  • Song, H., Zhao, Z., Chai, Y., Jin, X., Li, C., Yuan, F., Liu, S., Gao, Z., Wang, H., Song, J., Vazquez, L., Zhang, Y., Tan, S., Morel, C. M., Yan, J., Shi, Y., Qi, J., Gao, F., & Gao, G. F. (2019). Molecular basis of arthritogenic alphavirus receptor MXRA8 binding to Chikungunya virus envelope protein. Cell, 177(7), 1714–1724.e12. https://doi.org/10.1016/j.cell.2019.04.008
  • Sousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367 https://doi.org/10.1186/1756-0500-5-367
  • Subudhi, B. B., Chattopadhyay, S., Mishra, P., & Kumar, A. (2018). Current strategies for inhibition of Chikungunya infection. Viruses, 10(5), 235. https://doi.org/10.3390/v10050235
  • Teissier, E., Penin, F., & Pécheur, E. I. (2011). Targeting cell entry of enveloped viruses as an antiviral strategy. Molecules, 16(1), 221–250. https://doi.org/10.3390/molecules16010221
  • van Duijl-Richter, M. K. S., Hoornweg, T. E., Rodenhuis-Zybert, I. A., & Smit, J. M. (2015). Early events in chikungunya virus infection-from virus cell binding to membrane fusion. Viruses, 7(7), 3647–3674. https://doi.org/10.3390/v7072792
  • Verma, J., Subbarao, N., & Rajala, M. S. (2020). Envelope proteins as antiviral drug target. Journal of Drug Targeting, 28(10), 1046–1052. https://doi.org/10.1080/1061186X.2020.1792916
  • Voss, J. E., Vaney, M.-C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E., Thompson, A., Bricogne, G., & Rey, F. A. (2010). Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature, 468(7324), 709–712. https://doi.org/10.1038/nature09555
  • Wang, R., Lai, L., & Wang, S. (2002). Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design, 16(1), 11–26. https://doi.org/10.1023/A:1016357811882
  • Weber, C., Sliva, K., von Rhein, C., Kümmerer, B. M., & Schnierle, B. S. (2015). The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Research, 113, 1–3. https://doi.org/10.1016/j.antiviral.2014.11.001
  • Wintachai, P., Wikan, N., Kuadkitkan, A., Jaimipuk, T., Ubol, S., Pulmanausahakul, R., Auewarakul, P., Kasinrerk, W., Weng, W.-Y., Panyasrivanit, M., Paemanee, A., Kittisenachai, S., Roytrakul, S., & Smith, D. R. (2012). Identification of prohibitin as a Chikungunya virus receptor protein. Journal of Medical Virology, 84(11), 1757–1770. https://doi.org/10.1002/jmv.23403
  • Yonezawa, T., Ohtsuka, A., Yoshitaka, T., Hirano, S., Nomoto, H., Yamamoto, K., & Ninomiya, Y. (2003). Limitrin, a novel immunoglobulin superfamily protein localized to glia limitans formed by astrocyte endfeet. Glia, 44(3), 190–204. https://doi.org/10.1002/glia.10279
  • Zhang, R., Kim, A. S., Fox, J. M., Nair, S., Basore, K., Klimstra, W. B., Rimkunas, R., Fong, R. H., Lin, H., Poddar, S., Crowe, J. E., Doranz, B. J., Fremont, D. H., & Diamond, M. S. (2018). Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature, 557(7706), 570–574. https://doi.org/10.1038/s41586-018-0121-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.