139
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification of tumor homing peptides by utilizing hybrid feature representation

, &
Pages 3405-3412 | Received 09 Oct 2021, Accepted 25 Feb 2022, Published online: 09 Mar 2022

References

  • Akbar, S., Khan, S., Ali, F., Hayat, M., Qasim, M., & Gul, S. (2020). iHBP-DeepPSSM: Identifying hormone binding proteins using PsePSSM based evolutionary features and deep learning approach. Chemometrics and Intelligent Laboratory Systems, 204, 104103. https://doi.org/10.1016/j.chemolab.2020.104103
  • Basith, S., Manavalan, B., Shin, T. H., & Lee, G. (2018). iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Computational and Structural Biotechnology Journal, 16, 412–420. https://doi.org/10.1016/j.csbj.2018.10.007
  • Bray, F. I., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
  • Charoenkwan, P., Nantasenamat, C., Hasan, M. M., & Shoombuatong, W. (2020). iTTCA-Hybrid: Improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation. Analytical Biochemistry, 599, 113747. https://doi.org/10.1016/j.ab.2020.113747
  • Chen, W., Feng, P., & Nie, F. (2020). iATP: A sequence based method for identifying anti-tubercular peptides. Medicinal Chemistry, 16(5), 620–625. https://doi.org/10.2174/1573406415666191002152441
  • Chen, W., Feng, P., & Nie, F. (2020). iATP: A sequence based method for identifying anti-tubercular peptides. Medicinal Chemistry (Shariqah (United Arab Emirates)), 16(5), 620–625. https://doi.org/10.2174/1573406415666191002152441
  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297. https://doi.org/10.1007/BF00994018
  • Dehghani, M., Montazeri, Z., Dhiman, G., Malik, O. P., Morales-Menendez, R., Ramirez-Mendoza, R. A., Dehghani, A., Guerrero, J. M., & Parra-Arroyo, L. (2020). A spring search algorithm applied to engineering optimization problems. Applied Sciences, 10(18), 6173. https://doi.org/10.3390/app10186173
  • Dhiman, G. (2021). ESA: A hybrid bio-inspired metaheuristic optimization approach for engineering problems. Engineering with Computers, 37(1), 323–353. https://doi.org/10.1007/s00366-019-00826-w
  • Dhiman, G., & Kaur, A. (2019). STOA: A bio-inspired based optimization algorithm for industrial engineering problems. Engineering Applications of Artificial Intelligence, 82(JUN), 148–174. https://doi.org/10.1016/j.engappai.2019.03.021
  • Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: A novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software, 114, 48–70. https://doi.org/10.1016/j.advengsoft.2017.05.014
  • Dhiman, G., & Kumar, V. (2018). Emperor penguin optimizer: A bio-inspired algorithm for engineering problems. Knowledge-Based Systems, 159, 20–50. https://doi.org/10.1016/j.knosys.2018.06.001
  • Dhiman, G., & Kumar, V. (2019). Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-Based Systems, 165, 169–196. https://doi.org/10.1016/j.knosys.2018.11.024
  • Dhiman, G., Garg, M., Nagar, A., Kumar, V., & Dehghani, M. (2021). A novel algorithm for global optimization: Rat Swarm Optimizer. Journal of Ambient Intelligence and Humanized Computing, 12(8), 8457–8482. https://doi.org/10.1007/s12652-020-02580-0
  • Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. Journal of Molecular Biology, 347(4), 827–839. https://doi.org/10.1016/j.jmb.2005.01.071
  • Gautam, A., Kapoor, P., Chaudhary, K., Kumar, R., & Raghava, G. P. S, Open Source Drug Discovery Consortium (2014). Tumor Homing Peptides as Molecular Probes for Cancer Therapeutics, Diagnostics and Theranostics. Current Medicinal Chemistry, 21(21), 2367–2391. https://doi.org/10.2174/0929867321666140217122100
  • Huang, Y., Niu, B., Gao, Y., Fu, L., & Li, W. (2010). CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics (Oxford, England), 26(5), 680–682. https://doi.org/10.1093/bioinformatics/btq003
  • Jia, J., Liu, Z., Xiao, X., Liu, B., & Chou, K.-C. (2015). iPPI-Esml: An ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. Journal of Theoretical Biology, 377, 47–56. https://doi.org/10.1016/j.jtbi.2015.04.011
  • Jones, D. T., & Cozzetto, D. (2015). DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics (Oxford, England), 31(6), 857–863. https://doi.org/10.1093/bioinformatics/btu744
  • Kapoor, P., Singh, H., Gautam, A., Chaudhary, K., Kumar, R., & Raghava, G. P. S. (2012). TumorHoPe: A Database of Tumor Homing Peptides. PLoS One, 7(4), e35187. https://doi.org/10.1371/journal.pone.0035187
  • Kaur, S., Awasthi, L. K., Sangal, A., & Dhiman, G. (2020). Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Engineering Applications of Artificial Intelligence, 90, 103541. https://doi.org/10.1016/j.engappai.2020.103541
  • Laakkonen, P., & Vuorinen, K. (2010). Homing peptides as targeted delivery vehicles. Integrative Biology: Quantitative Biosciences from Nano to Macro, 2(7–8), 326–337. https://doi.org/10.1039/c0ib00013b
  • Li, N., Kang, J., Jiang, L., He, B., Lin, H., & Huang, J. (2017). PSBinder: A web service for predicting polystyrene surface-binding peptides. BioMed Research International, 2017, 5761517. https://doi.org/10.1155/2017/5761517
  • Li, Q., Dong, B., Wang, D., & Wang, S. (2020). Identification of secreted proteins from malaria protozoa with few features. IEEE Access, 8, 89793–89801. https://doi.org/10.1109/ACCESS.2020.2994206
  • Lissabet, J. F. B., Belén, L. H., & Farias, J. G. (2019). AntiVPP 1.0: A portable tool for prediction of antiviral peptides. Computers in Biology and Medicine, 107, 127–130. https://doi.org/10.1016/j.compbiomed.2019.02.011
  • Liu, J., Ji, S., & Ye, J. (2009). SLEP: Sparse learning with efficient projections. Arizona State University, 6(491), 7.
  • Meng, C., Hu, Y., Zhang, Y., & Guo, F. (2020). PSBP-SVM: A machine learning-based computational identifier for predicting polystyrene binding peptides. Frontiers in Bioengineering and Biotechnology, 8, 245. https://doi.org/10.3389/fbioe.2020.00245
  • Mészáros, B., Erdos, G., & Dosztányi, Z. (2018). IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Research, 46(W1), W329–W37. https://doi.org/10.1093/nar/gky384
  • Mishra, A., Pokhrel, P., & Hoque, M. T. (2019). StackDPPred: A stacking based prediction of DNA-binding protein from sequence. Bioinformatics (Oxford, England), 35(3), 433–441. https://doi.org/10.1093/bioinformatics/bty653
  • Nanni, L., Brahnam, S., & Lumini, A. (2012). Wavelet images and Chou’s pseudo amino acid composition for protein classification. Amino Acids, 43(2), 657–665. https://doi.org/10.1007/s00726-011-1114-9
  • Sharma, A., Kapoor, P., Gautam, A., Chaudhary, K., Kumar, R., Chauhan, J. S., Tyagi, A., & Raghava, G. P. S. (2013). Computational approach for designing tumor homing peptides. Scientific Reports, 3(1), 1607. https://doi.org/10.1038/srep01607
  • Shoombuatong, W., Schaduangrat, N., Pratiwi, R., & Nantasenamat, C. (2019). THPep: A machine learning-based approach for predicting tumor homing peptides. Computational Biology and Chemistry, 80, 441–451. https://doi.org/10.1016/j.compbiolchem.2019.05.008
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29. https://doi.org/10.3322/caac.21254
  • Tan, J. X., Li, S. H., Zhang, Z. M., Chen, C. X., Chen, W., Tang, H., & Lin, H. (2019). Identification of hormone binding proteins based on machine learning methods. Mathematical Biosciences and Engineering: MBE, 16(4), 2466–2480. https://doi.org/10.3934/mbe.2019123
  • Tang, H., Zhao, Y.-W., Zou, P., Zhang, C.-M., Chen, R., Huang, P., & Lin, H. (2018). HBPred: A tool to identify growth hormone-binding proteins. International Journal of Biological Sciences, 14(8), 957–964. https://doi.org/10.7150/ijbs.24174
  • Usmani, S. S., Bhalla, S., & Raghava, G. P. (2018). Prediction of antitubercular peptides from sequence information using ensemble classifier and hybrid features. Frontiers in Pharmacology, 9, 954. https://doi.org/10.3389/fphar.2018.00954
  • Wang, H., Ding, Y., Tang, J., & Guo, F. (2020). Identification of membrane protein types via multivariate information fusion with Hilbert–Schmidt Independence Criterion. Neurocomputing, 383, 257–269. https://doi.org/10.1016/j.neucom.2019.11.103
  • Wang, K., Li, S., Wang, Q., & Hou, C. (2019). Identification of hormone-binding proteins using a novel ensemble classifier. Computing, 101(6), 693–703. https://doi.org/10.1007/s00607-018-0682-x
  • Wang, X., Zhang, W., Zhang, Q., & Li, G. (2015). MultiP-SChlo: Multi-label protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier. Bioinformatics (Oxford, England), 31(16), 2639–2645. https://doi.org/10.1093/bioinformatics/btv212
  • Xiao, X., Wang, P., & Chou, K. (2012). iNR-PhysChem: A sequence-based predictor for identifying nuclear receptors and their subfamilies via physical-chemical property matrix. PLoS One, 7(2), e30869. https://doi.org/10.1371/journal.pone.0030869
  • Xiao, X., Xu, Z., Qiu, W., Wang, P., Ge, H., & Chou, K. (2019). iPSW(2L)-PseKNC: A two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition. Genomics, 111(6), 1785–1793. https://doi.org/10.1016/j.ygeno.2018.12.001
  • Xiao, X., Zou, H., & Lin, W. (2015). iMem-Seq: A multi-label learning classifier for predicting membrane proteins types. The Journal of Membrane Biology, 248(4), 745–752. https://doi.org/10.1007/s00232-015-9787-8
  • Yadav, A., Sahu, R., & Nath, A. (2020). A representation transfer learning approach for enhanced prediction of growth hormone binding proteins. Computational Biology and Chemistry, 87, 107274. https://doi.org/10.1016/j.compbiolchem.2020.107274
  • Zhou, C., Liu, S., & Zhang, S. (2019). Identification of amyloidogenic peptides via optimized integrated features space based on physicochemical properties and PSSM. Analytical Biochemistry, 583, 113362. https://doi.org/10.1016/j.ab.2019.113362
  • Zou, H., & Yang, J. (2019). Dynamic thresholding networks for schizophrenia diagnosis. Artificial Intelligence in Medicine, 96, 25–32. https://doi.org/10.1016/j.artmed.2019.03.007
  • Zou, H., & Yang, J. (2019). Multi-frequency dynamic weighted functional connectivity networks for schizophrenia diagnosis. Applied Magnetic Resonance, 50(7), 847–859. https://doi.org/10.1007/s00723-019-01117-9
  • Zou, H., & Yang, J. (2020). Multiple functional connectivity networks fusion for schizophrenia diagnosis. Medical & Biological Engineering & Computing, 58(8), 1779–1790. https://doi.org/10.1007/s11517-020-02193-x
  • Zuo, Y., Peng, Y., Liu, L., Chen, W., Yang, L., & Fan, G. (2014). Predicting peroxidase subcellular location by hybridizing different descriptors of Chou' pseudo amino acid patterns. Analytical Biochemistry, 458, 14–19. https://doi.org/10.1016/j.ab.2014.04.032

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.