308
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Parallel actin monomers in the 8S complex of actin–INF2

, , , , , & show all
Pages 3295-3304 | Received 17 Nov 2021, Accepted 21 Feb 2022, Published online: 28 Mar 2022

References

  • Alto, L. T., & Terman, J. R. (2018). MICALs. Current Biology: CB, 28(9), R538–R541. https://doi.org/10.1016/j.cub.2018.01.025
  • Baker, J. L., Courtemanche, N., Parton, D. L., Mccullagh, M., Pollard, T. D., & Voth, G. A. (2015). Actin filament nucleation is influenced by electrostatic interactions with the Bni1p Formin FH2 domain. Biophysical Journal, 108(2), 508a. https://doi.org/10.1016/j.bpj.2014.11.2782
  • Bubb, M. R., Govindasamy, L., Yarmola, E. G., Vorobiev, S. M., Almo, S. C., Somasundaram, T., Chapman, M. S., Agbandje-McKenna, M., & McKenna, R. (2002). Polylysine induces an antiparallel actin dimer that nucleates filament assembly: Crystal structure at 3.5-A resolution. The Journal of Biological Chemistry, 277(23), 20999–21006. https://doi.org/10.1074/jbc.M201371200 Epub 2002 Apr 3. Erratum in: J Biol Chem 2002 Sep 6;277(36):33529. PMID: 11932258.
  • Chhabra, E. S., & Higgs, H. N. (2006). INF2 is a WASP homology 2 Motif-containing Formin that severs actin filaments and accelerates both polymerization and depolymerization. The Journal of Biological Chemistry, 281(36), 26754–26767. https://doi.org/10.1074/jbc.M604666200
  • Edgar, R. C. (2004). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5, 113. https://doi.org/10.1186/1471-2105-5-113 PMID: 15318951; PMCID: PMC517706.
  • Fremont, S., Romet-Lemonne, G., Houdusse, A., & Echard, A. (2017). Emerging roles of MICAL family proteins - from actin oxidation to membrane trafficking during cytokinesis. Journal of Cell Science, 130(9), 1509–1517.
  • Grintsevich, E. E., Phillips, M., Pavlov, D., Phan, M., Reisler, E., & Muhlrad, A. (2010). Antiparallel dimer and actin assembly. Biochemistry, 49(18), 3919–3927. https://doi.org/10.1021/bi1002663
  • Grintsevich, E. E., Ahmed, G., Ginosyan, A. A., Wu, H., Rich, S. K., Reisler, E., & Terman, J. R. (2021). Profilin and Mical combine to impair F-actin assembly and promote disassembly and remodeling. Nature Communications, 12(1), 5542. https://doi.org/10.1038/s41467-021-25781-3 PMID: 34545088; PMCID: PMC8452626
  • Grintsevich, E. E., Ge, P., Sawaya, M. R., Yesilyurt, H. G., Terman, J. R., Zhou, Z. H., & Reisler, E. (2017). Catastrophic disassembly of actin filaments via Mical-mediated oxidation. Nature Communications, 8(1), 2183. https://doi.org/10.1038/s41467-017-02357-8
  • Grintsevich, E. E., Yesilyurt, H. G., Rich, S. K., Hung, R. J., Terman, J. R., & Reisler, E. (2016). F-actin dismantling through a redox-driven synergy between Mical and cofilin. Nature Cell Biology, 18(8), 876–885. https://doi.org/10.1038/ncb3390
  • Gurel, P. S., Ge, P., Grintsevich, E. E., Shu, R., Blanchoin, L., Zhou, Z. H., Reisler, E., & Higgs, H. N. (2014). INF2-mediated severing through actin filament encirclement and disruption. Current Biology: CB, 24(2), 156–164. https://doi.org/10.1016/j.cub.2013.12.018 Epub 2014 Jan 9. PMID: 24412206; PMCID: PMC3992431.
  • Gurel, P. S., A, M., Guo, B., Shu, R., Mierke, D. F., & Higgs, H. N. (2015). Assembly and turnover of short actin filaments by the Formin INF2 and Profilin. Journal of Biological Chemistry, 290(37), 22494–22506. https://doi.org/10.1074/jbc.M115.670166
  • Hung, R. J., Pak, C. W., & Terman, J. R. (2011). Direct redox regulation of F-actin assembly and disassembly by Mical. Science (New York, N.Y.), 334(6063), 1710–1713. https://doi.org/10.1126/science.1211956
  • Hung, R. J., Yazdani, U., Yoon, J., Wu, H., Yang, T., Gupta, N., Huang, Z., van Berkel, W. J., & Terman, J. R. (2010). Mical links semaphorins to F-actin disassembly. Nature, 463(7282), 823–827. https://doi.org/10.1038/nature08724
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Kouyama, T., & Mihashi, K. (2005). Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. European Journal of Biochemistry, 114(1), 33–38. PMID: 7011802. https://doi.org/10.1111/j.1432-1033.1981.tb06167.x
  • Manta, B., & Gladyshev, V. N. (2017). Regulated methionine oxidation by monooxygenases. Free Radical Biology & Medicine, 109, 141–155. https://doi.org/10.1016/j.freeradbiomed.2017.02.010
  • Merino, F., Pospich, S., Funk, J., Wagner, T., Küllmer, F., Arndt, H. D., Bieling, P., & Raunser, S. (2018). Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM. Nature Structural & Molecular Biology, 25(6), 528–537. https://doi.org/10.1038/s41594-018-0074-0 Epub 2018 Jun 4. PMID: 29867215.
  • Moseley, J. B., Sagot, I., Manning, A. L., Xu, Y., Eck, M. J., Pellman, D., & Goode, B. L. (2004). A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and Profilin. Molecular Biology of the Cell, 15(2), 896–907. https://doi.org/10.1091/mbc.e03-08-0621
  • Nielsen, M., Lundegaard, C., Lund, O., & Petersen, T. N. (2010). CPHmodels-3.0 - Remote homology modeling using structure guided sequence profiles. Nucleic Acids Research, 38(suppl_2), W576–W581. 2010, https://doi.org/10.1093/nar/gkq535
  • Otomo, T., Tomchick, D. R., Otomo, C., Panchal, S. C., Machius, M., & Rosen, M. K. (2005). Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature, 433(7025), 488–494. https://doi.org/10.1038/nature03251 Epub 2005 Jan 5. PMID: 15635372.
  • Reutzel, R., Yoshioka, C., Govindasamy, L., Yarmola, E. G., Agbandje-McKenna, M., Bubb, M. R., & McKenna, R. (2004). Actin crystal dynamics: Structural implications for F-actin nucleation, polymerization, and branching mediated by the anti-parallel dimer. Journal of Structural Biology, 146(3), 291–301. https://doi.org/10.1016/j.jsb.2003.12.006 PMID: 15099571.
  • Rotty, J. D., & Bear, J. E. (2014). Competition and collaboration between different actin assembly pathways allows for homeostatic control of the actin cytoskeleton. Bioarchitecture, 5(1–2), 27–34. https://doi.org/10.1080/19490992.2015.1090670
  • Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
  • Sept, D., Elcock, A. H., & McCammon, J. A. (1999). Computer simulations of actin polymerization can explain the barbed-pointed end asymmetry. Journal of Molecular Biology, 294(5), 1181–1189. https://doi.org/10.1006/jmbi.1999.3332
  • Silván, U., Boiteux, C., Sütterlin, R., Schroeder, U., Mannherz, H. G., Jockusch, B. M., Bernèche, S., Aebi, U., & Schoenenberger, C.-A. (2012). An antiparallel actin dimer is associated with the endocytic pathway in mammalian cells. Journal of Structural Biology, 177(1), 70–80. https://doi.org/10.1016/j.jsb.2011.09.010
  • Spudich, J. A., & Watt, S. (1971). The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. The Journal of Biological Chemistry, 246(15), 4866–4871. PMID: 4254541. https://doi.org/10.1016/S0021-9258(18)62016-2
  • Steinmetz, M. O., Goldie, K. N., & Aebi, U. (1997). A correlative analysis of actin filament assembly, structure, and dynamics. The Journal of Cell Biology, 138(3), 559–574. https://doi.org/10.1083/jcb.138.3.559
  • Tang, G., Peng, L., Baldwin, P. R., Mann, D. S., Jiang, W., Rees, I., & Ludtke, S. J. (2007). EMAN2: An extensible image processing suite for electron microscopy. Journal of Structural Biology, 157(1), 38–46. https://doi.org/10.1016/j.jsb.2006.05.009
  • Thompson, M. E., Heimsath, E. G., Gauvin, T. J., Higgs, H. N., & Kull, F. J. (2013). FMNL3 FH2-actin structure gives insight into formin-mediated actin nucleation and elongation. Nature Structural & Molecular Biology, 20(1), 111–118. https://doi.org/10.1038/nsmb.2462
  • Vanoni, M. A. (2017). Structure-function studies of MICAL, the unusual multidomain flavoenzyme involved in actin cytoskeleton dynamics. Archives of Biochemistry and Biophysics, 632, 118–141. https://doi.org/10.1016/j.abb.2017.06.004
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. 2018https://doi.org/10.1093/nar/gky427
  • Wioland, H., Fremont, S., Guichard, B., Echard, A., Jegou, A., & Romet-Lemonne, G. (2021). Actin filament oxidation by MICAL1 suppresses protections from cofilin-induced disassembly. EMBO Reports, 22(2), e50965.
  • Wu, H., Yesilyurt, H. G., Yoon, J., & Terman, J. R. (2018). The MICALs are a family of F-actin dismantling oxidoreductases conserved from drosophila to humans. Scientific Reports, 8(1), 937. https://doi.org/10.1038/s41598-017-17943-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.