205
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating binding of insecticide buprofezin to DNA by experimental and metadynamics simulation studies

, & ORCID Icon
Pages 3476-3484 | Received 16 Dec 2021, Accepted 03 Mar 2022, Published online: 14 Mar 2022

References

  • Ahmad, A., & Ahmad, M. (2018). Deciphering the mechanism of interaction of edifenphos with calf thymus DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 188, 244–251. https://doi.org/10.1016/j.saa.2017.07.014
  • Ahmad, I., Ahmad, A., & Ahmad, M. (2016). Binding properties of pendimethalin herbicide to DNA: Multispectroscopic and molecular docking approaches. Physical Chemistry Chemical Physics: PCCP, 18(9), 6476–6485. https://doi.org/10.1039/c5cp07351k
  • Ahmadi, F., & Jafari, B. (2011). Voltammetry and spectroscopy study of in vitro interaction of fenitrothion with DNA. Electroanalysis, 23, 675–682.
  • Arif, A., Ahmad, A., & Ahmad, M. (2021). Toxicity assessment of carmine and its interaction with calf thymus DNA. Journal of Biomolecular Structure & Dynamics, 39(16), 5861–5871. https://doi.org/10.1080/07391102.2020.1794962
  • Bibi, R., & Qureshi, I. R. (2019). Short-term exposure of Balb/c mice to buprofezin insecticide induces biochemical, enzymatic, histopathologic and genotoxic damage in liver and kidney tissues . Toxicology Mechanisms and Methods, 29(8), 587–603. https://doi.org/10.1080/15376516.2019.1631924
  • Chaires, J. B., Satyanarayana, S., Suh, D., Fokt, I., Przewloka, T., & Priebe, W. (1996). Parsing the free energy of anthracycline antibiotic binding to DNA. Biochemistry, 35(7), 2047–2053. https://doi.org/10.1021/bi952812r
  • Chen, K.-Y., Zhou, K.-L., Lou, Y.-Y., & Shi, J.-H. (2019). Exploring the binding interaction of calf thymus DNA with lapatinib, a tyrosine kinase inhibitor: Multi-spectroscopic techniques combined with molecular docking. Journal of Biomolecular Structure & Dynamics, 37(3), 576–583. https://doi.org/10.1080/07391102.2018.1433067
  • Guo, H., Cai, C., Gong, H., & Chen, X. (2011). Multi-spectroscopic method study the interaction of anti-inflammatory drug ketoprofen and calf thymus DNA and its analytical application. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 79(1), 92–96. https://doi.org/10.1016/j.saa.2011.02.012
  • Hackl, E. V., & Blagoi, Y. P. (2004). Urea effect on Cu(2+)-induced DNA structural transitions in solution . Journal of Inorganic Biochemistry, 98(11), 1911–1920. https://doi.org/10.1016/j.jinorgbio.2004.08.019
  • Huang, S., Zhu, F., Xiao, Q., Liang, Y., Zhou, Q., & Su, W. (2015). Thermodynamic investigation of the interaction between the [(η6-p-cymene)Ru(benzaldehyde-N4-phenylthiosemicarbazone)Cl)Cl anticancer drug and ct-DNA: Multispectroscopic and electrochemical studies. RSC Advances, 5(53), 42889–42902. https://doi.org/10.1039/C5RA03979G
  • Husain, M. A., Ishqi, H. M., Rehman, S. U., Sarwar, T., Afrin, S., Rahman, Y., & Tabish, M. (2017). Elucidating the interaction of sulindac with calf thymus DNA: Biophysical and in silico molecular modelling approach. New Journal of Chemistry, 41(24), 14924–14935. https://doi.org/10.1039/C7NJ03698A
  • Jalali, F., & Dorraji, P. S. (2012). Electrochemical and spectroscopic studies of the interaction between the neuroleptic drug, gabapentin, and DNA. Journal of Pharmaceutical and Biomedical Analysis, 70, 598–601. https://doi.org/10.1016/j.jpba.2012.06.005
  • Jana, B., Senapati, S., Ghosh, D., Bose, D., & Chattopadhyay, N. (2012). Spectroscopic exploration of mode of binding of ctDNA with 3-hydroxyflavone: A contrast to the mode of binding with flavonoids having additional hydroxyl groups . The Journal of Physical Chemistry. B, 116(1), 639–645. − https://doi.org/10.1021/jp2094824
  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy, 3rd ed. Springer.
  • Li, N., Ma, Y., Yang, C., Guo, L., & Yang, X. (2005). Interaction of anticancer drug mitoxantrone with DNA analyzed by electrochemical and spectroscopic methods. Biophysical Chemistry, 116(3), 199–205. https://doi.org/10.1016/j.bpc.2005.04.009
  • Liu, W., Lin, C., Wu, G., Dai, J., Chang, T., & Yang, D. (2019). Structures of 1:1 and 2:1 complexes of BMVC and MYC promoter G-quadruplex reveal a mechanism of ligand conformation adjustment for G4-recognition. Nucleic Acids Research, 47(22), 11931–11942. https://doi.org/10.1093/nar/gkz1015
  • Liu, H. K., & Sadler, P. J. (2011). Metal complexes as DNA intercalators. Accounts of Chemical Research, 44(5), 349–359. https://doi.org/10.1021/ar100140e
  • Mahadevan, S., & Palaniandavar, M. (1998). Spectroscopic and voltammetric studies on copper complexes of 2, 9-dimethyl-1, 10-phenanthrolines bound to calf thymus DNA. Inorganic Chemistry, 37(4), 693–700. https://doi.org/10.1021/ic961066r
  • Mirzaei-Kalar, Z. (2018). In vitro binding interaction of atorvastatin with calf thymus DNA: Multispectroscopic, gel electrophoresis and molecular docking studies. Journal of Pharmaceutical and Biomedical Analysis, 161, 101–109. https://doi.org/10.1016/j.jpba.2018.08.033
  • Mukherjee, A., & Singh, B. (2017). Binding interaction of pharmaceutical drug captopril with calf thymus DNA: A multispectroscopic and molecular docking study. Journal of Luminescence, 190, 319–327. https://doi.org/10.1016/j.jlumin.2017.05.068
  • Paul, B. K., & Guchhait, N. (2011). Exploring the Strength, Mode, Dynamics, and Kinetics of Binding Interaction of a Cationic Biological Photosensitizer with DNA: Implication on Dissociation of the drug-DNA complex via detergent sequestration. The Journal of Physical Chemistry. B, 115(41), 11938–11949. https://doi.org/10.1021/jp206589e
  • Ponkarpagam, S., Mahalakshmi, G., Vennila, K. N., & Elango, K. P. (2021). Concentration-dependent mode of binding of drug oxatomide with DNA: Multi-spectroscopic, voltammetric and metadynamics simulation analysis. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.191186
  • Qais, F. A., Abdullah, K. M., Alam, M., Naseem, I., & Ahmad, I. (2017). Interaction of capsaicin with calf thymus DNA: A multi-spectroscopic and molecular modelling study. International Journal of Biological Macromolecules, 97, 392–402. https://doi.org/10.1016/j.ijbiomac.2017.01.022
  • Radi, A. E., Nassef, H. M., & Eissa, A. (2013). Electrochemical studies of the interaction of alkylating agent busulfan with double strand DNA. Electroanalysis, 25(11), 2463–2467. https://doi.org/10.1002/elan.201300294
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Satyanarayana, S., Dabrowiak, J. C., & Chaires, J. B. (1992). Neither delta- nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry, 31(39), 9319–9324. https://doi.org/10.1021/bi00154a001
  • Satyanarayana, S., Dabrowiak, J. C., & Chaires, J. B. (1993). Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding. Biochemistry, 32(10), 2573–2584. https://doi.org/10.1021/bi00061a015
  • Shagufta, S., Akhtar, R., Afridi, S., & Rauf, B. (2019). Diagnostic accuracy of spot urine protein to creatinine ratio for estimation of significant proteinuria in patients of preeclampsia. Khyber Medical University, 11, 218–221.
  • Shahabadi, N., & Maghsudi, M. (2014). Multi-spectroscopic and molecular modeling studies on the interaction of antihypertensive drug; methyldopa with calf thymus DNA. Molecular bioSystems, 10(2), 338–347. https://doi.org/10.1039/c3mb70340a
  • Shahraki, S., Delarami, H. S., Mansouri-Torshizi, H., & Nouri, H. (2021a). Investigation of kinetics and thermodynamics in the interaction process between two pyridine derived Schiff base complexes and catalase. Journal of Molecular Liquids, 334, 116527. https://doi.org/10.1016/j.molliq.2021.116527
  • Shahraki, S., Delarami, H. S., Poorsargol, M., & Nezami, Z. S. (2021b). Structural and functional changes of catalase through interaction with Erlotinib hydrochloride. Use of Chou's 5-steps rule to study mechanisms. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 260, 119940. https://doi.org/10.1016/j.saa.2021.119940
  • Shahraki, S., Delarami, H. S., & Saeidifar, M. (2019). Catalase inhibition by two Schiff base derivatives. Kinetics, thermodynamic and molecular docking studies. Journal of Molecular Liquids, 287, 111003. https://doi.org/10.1016/j.molliq.2019.111003
  • Shahraki, S., Delarami, H. S., Saeidifar, M., & Nejat, R. (2020a). Catalytic activity and structural changes of catalase in the presence of Levothyroxine and Isoxsuprine hydrochloride. International Journal of Biological Macromolecules, 152, 126–136. https://doi.org/10.1016/j.ijbiomac.2020.02.064
  • Shahraki, S., Razmara, Z., & Shiri, F. (2020b). A paramagnetic oxalato-bridged binuclear copper (II) complex as an effective catalase inhibitor. Spectroscopic and molecular docking studies. Journal of Molecular Structure, 1208, 127865.
  • Shakeel, M., Butt, T. M., Zubair, M., Masood, H., Naveed, S., Janjua, K., Akhter, Z., Yaquba, A., & Mahmood, S. (2020). Electrochemical investigations of DNA-Intercalation potency of bisnitrophenoxy compounds with different alkyl chain lengths. Heliyon, 6(6), e04124. https://doi.org/10.1016/j.heliyon.2020.e04124
  • Shi, J.-H., Liu, T.-T., Jiang, M., Chen, J., & Wang, Q. (2015). Characterization of interaction of calf thymus DNA with gefitinib: Spectroscopic methods and molecular docking. Journal of Photochemistry and Photobiology. B, Biology, 147, 47–55. https://doi.org/10.1016/j.jphotobiol.2015.03.005
  • Tamil Selvi, P., & Palaniandavar, M. (2002). Spectral, viscometric and electrochemical studies on mixed ligand cobalt(III) complexes of certain diimine ligands bound to calf thymus DNA. Inorganica Chimica Acta, 337, 420–428. https://doi.org/10.1016/S0020-1693(02)01112-X
  • Ullah, F., Gul, H., Yousaf, H. K., Xiu, W., Qian, D., Gao, X., Tariq, K., Han, P., Desneux, N., & Song, D. (2019). Impact of low lethal concentrations of buprofezin on biological traits and expression profile of chitin synthase 1 gene (CHS1) in melon aphid, Aphis gossypii. Scientific Reports, 9(1), 12291. https://doi.org/10.1038/s41598-019-48199-w
  • Wang, L., Lin, L., & Ye, B. (2006). Electrochemical studies of the interaction of the anticancer herbal drug emodin with DNA. Journal of Pharmaceutical and Biomedical Analysis, 42(5), 625–629. https://doi.org/10.1016/j.jpba.2006.05.017
  • Wang, F., Yang, J. H., Wu, X., Wang, F., & Ding, H. H. (2007). Investigation of the interaction between curcumin and nucleic acids in the presence of CTAB. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 67(2), 385–390. https://doi.org/10.1016/j.saa.2006.07.027
  • Xiaotong, J., Tingting, K., Zhu, N., Ning, X., Wei, W., Guangke, L., & Sang, N. (2016). Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism. Journal of Hazardous Materials, 320, 176–186. https://doi.org/10.1016/j.jhazmat.2016.08.027
  • Yong, L., Yang, Z. Y., & Wang, M. F. (2010). Synthesis, characterization, DNA binding properties, fluorescence studies and antioxidant activity of transition metal complexes with hesperetin-2-hydroxy benzoyl hydrazone. Journal of Fluorescence, 20(4), 891–905. https://doi.org/10.1007/s10895-010-0635-z
  • Zhang, G., Hu, X., & Fu, P. (2012a). Spectroscopic studies on the interaction between carbaryl and calf thymus DNA with the use of ethidium bromide as a fluorescence probe. Journal of Photochemistry and Photobiology. B, Biology, 108, 53–61. https://doi.org/10.1016/j.jphotobiol.2011.12.011
  • Zhang, G., Hu, X., & Pan, J. (2011). Spectroscopic studies of the interaction between pirimicarb and calf thymus DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 78(2), 687–694. https://doi.org/10.1016/j.saa.2010.11.050
  • Zhang, Y., Zhang, G., Fu, P., Ma, Y., & Zhou, J. (2012b). Study on the interaction of triadimenol with calf thymus DNA by multispectroscopic methods and molecular modeling. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 96, 1012–1019. https://doi.org/10.1016/j.saa.2012.08.002
  • Zhong, W., Yu, J. S., Liang, Y., Fan, K., & Lai, L. (2004). Chlorobenzylidine-calf thymus DNA interaction II: Circular dichroism and nuclear magnetic resonance studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 60(13), 2985–2992. https://doi.org/10.1016/j.saa.2004.02.012
  • Zhu, P., Zhang, G., Ma, Y., Zhang, Y., Miao, H., & Wu, Y. (2013). Study of DNA interactions with bifenthrin by spectroscopic techniques and molecular modeling. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 112, 7–14. https://doi.org/10.1016/j.saa.2013.04.022

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.