484
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Exploring species-specific inhibitors with multiple target sites on S. aureus pyruvate kinase using a computational workflow

, , &
Pages 3496-3510 | Received 10 Nov 2021, Accepted 05 Mar 2022, Published online: 18 Mar 2022

References

  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins: Structure, Function, and Genetics, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Axerio-Cilies, P., See, R. H., Zoraghi, R., Worral, L., Lian, T., Stoynov, N., Jiang, J., Kaur, S., Jackson, L., Gong, H., Swayze, R., Amandoron, E., Kumar, N. S., Moreau, A., Hsing, M., Strynadka, N. C., McMaster, W. R., Finlay, B. B., Foster, L. J., … Cherkasov, A. (2012). Cheminformatics-driven discovery of selective, nanomolar inhibitors for staphylococcal pyruvate kinase. ACS Chemical Biology, 7(2), 350–359. https://doi.org/10.1021/cb2003576
  • Ayyildiz, M., Celiker, S., Ozhelvaci, F., & Akten, E. D. (2020). Identification of alternative allosteric sites in glycolytic enzymes for potential use as species-specific drug targets. Frontiers in Molecular Biosciences, 7, 88–819. https://doi.org/10.3389/fmolb.2020.00088
  • Bayly, C. I., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. https://doi.org/10.1021/j100142a004
  • Brysbaert, G., & Lensink, M. F. (2021). Centrality measures in residue interaction networks to highlight amino acids in protein–protein binding. Frontiers in Bioinformatics, 1, 684970. https://doi.org/10.3389/fbinf.2021.684970
  • Case, D. A., Betz, R. M., Botello-Smith, W., Cerutti, D. S., T. E., Cheatham, I., Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Lin, C., Luchko, T., … Kollman, P. A. (2016). Amber 16. University of California.
  • Cheatham, T. E., Miller, J. L., Fox, T., Darden, T. A., & Kollman, P. A. (1995). Molecular dynamics simulations on solvated biomolecular systems: The particle mesh ewald method leads to stable trajectories of DNA, RNA, and proteins. Journal of the American Chemical Society, 117(14), 4193–4194. https://doi.org/10.1021/ja00119a045
  • Chennubhotla, C., Rader, A. J., Yang, L. W., & Bahar, I. (2005). Elastic network models for understanding biomolecular machinery: From enzymes to supramolecular assemblies. Physical Biology, 2(4), S173–S180. https://doi.org/10.1088/1478-3975/2/4/S12
  • Cherkasov, A., Hsing, M., Zoraghi, R., Foster, L. J., See, R. H., Stoynov, N., Jiang, J., Kaur, S., Lian, T., Jackson, L., Gong, H., Swayze, R., Amandoron, E., Hormozdiari, F., Dao, P., Sahinalp, C., Santos-Filho, O., Axerio-Cilies, P., Byler, K., … Reiner, N. E. (2011). Mapping the protein interaction network in methicillin-resistant Staphylococcus aureus. Journal of Proteome Research, 10(3), 1139–1150. https://doi.org/10.1021/pr100918u
  • Christofk, H. R., Vander Heiden, M. G., Wu, N., Asara, J. M., & Cantley, L. C. (2008). Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature, 452(7184), 181–186. https://doi.org/10.1038/nature06667
  • DasGupta, D., Mandalaparthy, V., & Jayaram, B. (2017). A component analysis of the free energies of folding of 35 proteins: A consensus view on the thermodynamics of folding at the molecular level. Journal of Computational Chemistry, 38(32), 2791–2801. https://doi.org/10.1002/jcc.25072
  • David-Eden, H., & Mandel-Gutfreund, Y. (2008). Revealing unique properties of the ribosome using a network based analysis. Nucleic Acids Research, 36(14), 4641–4652. https://doi.org/10.1093/nar/gkn433
  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32(Web Server issue), W665–W667. https://doi.org/10.1093/nar/gkh381
  • Enriqueta Muñoz, M., & Ponce, E. (2003). Pyruvate kinase: Current status of regulatory and functional properties. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 135(2), 197–218. https://doi.org/10.1016/S1096-4959(03)00081-2
  • Fokas, A. S., Cole, D. J., Ahnert, S. E., & Chin, A. W. (2017). Corrigendum: Residue geometry networks: A rigidity-based approach to the amino acid network and evolutionary rate analysis. Scientific Reports, 7(1), 42654–42615. https://doi.org/10.1038/srep42654
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09, Revision B.01. Gaussian 09, Revision B.01, Gaussian, Inc.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Greener, J. G., & Sternberg, M. J. (2018). Structure-based prediction of protein allostery. Current Opinion in Structural Biology, 50, 1–8. https://doi.org/10.1016/j.sbi.2017.10.002
  • Guzel, P., & Kurkcuoglu, O. (2017). Identification of potential allosteric communication pathways between functional sites of the bacterial ribosome by graph and elastic network models. Biochimica et Biophysica Acta. General Subjects, 1861(12), 3131–3141. https://doi.org/10.1016/j.bbagen.2017.09.005
  • Henzler, A. M., & Rarey, M. (2010). In pursuit of fully flexible protein-ligand docking: modeling the bilateral mechanism of binding. Molecular Informatics, 29(3), 164–173. https://doi.org/10.1002/minf.200900078
  • Hopkins, A. L., & Groom, C. R. (2003). Target analysis: a priori assessment of druggability. In Small Molecule - Protein Interactions. Ernst Schering Research Foundation Workshop (Vol. 42, pp. 11-17). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-05314-0_2
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • James, J. P. S. (1989). Optimization of parameters for semiempirical methods II. Applications. Journal of Computational Chemistry, 10(2), 221–264. Retrieved from https://doi.org/10.1002/jcc.540100209
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Jurica, M. S., Mesecar, A., Heath, P. J., Shi, W., Nowak, T., & Stoddard, B. L. (1998). The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure (Structure), 6(2), 195–210. https://doi.org/10.1016/S0969-2126(98)00021-5
  • Kaynak, B. T., Findik, D., & Doruker, P. (2018). RESPEC incorporates residue specificity and the ligand effect into the elastic network model. The Journal of Physical Chemistry. B, 122(21), 5347–5355. https://doi.org/10.1021/acs.jpcb.7b10325
  • Kayne, F. J. (1973). 11 Pyruvate kinase. In The Enzymes (Vol. 8, pp. 353–382). Academic Press.
  • Kürkçüoğlu, Ö. (2018). Exploring allosteric communication in multiple states of the bacterial ribosome using residue network analysis. Turkish Journal of Biology = Turk Biyoloji Dergisi, 42(5), 392–404. https://doi.org/10.3906/biy-1802-77
  • Kurkcuoglu, O., Gunes, M. U., & Haliloglu, T. (2020). Local and global motions underlying antibiotic binding in bacterial ribosome. Journal of Chemical Information and Modeling, 60(12), 6447–6461. https://doi.org/10.1021/acs.jcim.0c00967
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Mattevi, A., Valentini, G., Rizzi, M., Speranza, M. L., Bolognesi, M., & Coda, A. (1995). Crystal structure of Escherichia coli pyruvate kinase type I: molecular basis of the allosteric transition. Structure (London, England: 1993), 3(7), 729–741. https://doi.org/10.1016/S0969-2126(01)00207-6 https://doi.org/10.1016/S0969-2126(01)00207-6
  • Menon, R. M., Polepally, A. R., Khatri, A., Awni, W. M., & Dutta, S. (2017). Clinical pharmacokinetics of paritaprevir. Clinical Pharmacokinetics, 56(10), 1125–1137. https://doi.org/10.1007/s40262-017-0520-x
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Murima, P., McKinney, J. D., & Pethe, K. (2014). Targeting bacterial central metabolism for drug development. Chemistry & Biology, 21(11), 1423–1432. https://doi.org/10.1016/j.chembiol.2014.08.020
  • Ohara, O., Dorit, R. L., & Gilbert, W. (1989). Direct genomic sequencing of bacterial DNA: The pyruvate kinase I gene of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 86(18), 6883–6887. https://doi.org/10.1073/pnas.86.18.6883
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 55(2), 383–394. https://doi.org/10.1002/prot.20033
  • Pastor, R. W., Brooks, B. R., & Szabo, A. (1988). An analysis of the accuracy of langevin and molecular dynamics algorithms. Molecular Physics, 65(6), 1409–1419. https://doi.org/10.1080/00268978800101881
  • Pioletti, M., Schlünzen, F., Harms, J., Zarivach, R., Glühmann, M., Avila, H., Bashan, A., Bartels, H., Auerbach, T., Jacobi, C., Hartsch, T., Yonath, A., & Franceschi, F. (2001). Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. The EMBO Journal, 20(8), 1829–1839. https://doi.org/10.1093/emboj/20.8.1829
  • Puckett, S., Trujillo, C., Eoh, H., Marrero, J., Spencer, J., Jackson, M., Schnappinger, D., Rhee, K., & Ehrt, S. (2014). Inactivation of fructose-1,6-bisphosphate aldolase prevents optimal co-catabolism of glycolytic and gluconeogenic carbon substrates in mycobacterium tuberculosis. PLoS Pathogens, 10(5), e1004144 https://doi.org/10.1371/journal.ppat.1004144
  • Rab, M. A. E., Oirschot, B. A., Van, Kosinski, P. A., Hixon, J., Johnson, K., Chubukov, V., Dang, L., Pasterkamp, G., van Straaten, S., van Solinge, W. W., van Beers, E. J., Kung, C., & van Wijk, R. (2020). AG-348 (mitapivat), an allosteric activator of red blood cell pyruvate kinase, increases enzymatic activity, protein stability, and adenosine triphosphate levels over a broad range of PKLR genotypes. Haematologica, 106(1), 238–249. https://doi.org/10.3324/haematol.2019.238865
  • Rosenquist, Å., Samuelsson, B., Johansson, P. O., Cummings, M. D., Lenz, O., Raboisson, P., Simmen, K., Vendeville, S., De Kock, H., Nilsson, M., Horvath, A., Kalmeijer, R., De La Rosa, G., & Beumont-Mauviel, M. (2014). Discovery and development of simeprevir (TMC435), a HCV NS3/4A protease inhibitor. J Med Chem, 57(5), 1673–1693. https://doi.org/10.1021/jm401507s
  • Russ, A. P., & Lampel, S. (2005). The druggable genome: An update. Drug Discovery Today, 10(23-24), 1607–1610. https://doi.org/10.1016/S1359-6446(05)03666-4
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Schmidtke, P., & Barril, X. (2010). Understanding and predicting druggability. A high-throughput method for detection of drug binding sites. Journal of Medicinal Chemistry, 53(15), 5858–5867. https://doi.org/10.1021/jm100574m
  • Schmidtke, P., Bidon-Chanal, A., Luque, F. J., & Barril, X. (2011). MDpocket: Open-source cavity detection and characterization on molecular dynamics trajectories. Bioinformatics (Oxford, England), 27(23), 3276–3285. https://doi.org/10.1093/bioinformatics/btr550
  • Schormann, N., Hayden, K. L., Lee, P., Banerjee, S., & Chattopadhyay, D. (2019). An overview of structure, function, and regulation of pyruvate kinases. Protein Science : A Publication of the Protein Society, 28(10), 1771–1784. https://doi.org/10.1002/pro.3691
  • Schramm, A., Siebers, B., Tjaden, B., Brinkmann, H., & Hensel, R. (2000). Pyruvate kinase of the hyperthermophilic crenarchaeote Thermoproteus tenax: Physiological role and phylogenetic aspects. Journal of Bacteriology, 182(7), 2001–2009. https://doi.org/10.1128/JB.182.7.2001-2009.2000
  • Scott, L. J. (2020). Ubrogepant: First approval. Drugs, 80(3), 323–328. https://doi.org/10.1007/s40265-020-01264-5
  • Serçinoglu, O., & Ozbek, P. (2018). GRINN: A tool for calculation of residue interaction energies and protein energy network analysis of molecular dynamics simulations. Nucleic Acids Research, 46(W1), W554–W562. https://doi.org/10.1093/nar/gky381
  • Sharma, R., Jade, D., Mohan, S., Chandel, R., & Sugumar, S. (2021). In-silico virtual screening for identification of potent inhibitor for L2-β-lactamase from Stenotrophomonas maltophilia through molecular docking, molecular dynamics analysis study. Journal of Biomolecular Structure & Dynamics, 39(18), 7123–7137. https://doi.org/10.1080/07391102.2020.1805365
  • Silberstein, S. D., & McCrory, D. C. (2003). Ergotamine and dihydroergotamine: History, pharmacology, and efficacy. Headache, 43(2), 144–166. https://doi.org/10.1046/j.1526-4610.2003.03034.x
  • Souza, B. C., de Lacerda, P. S., Pita, S. S., da, R., Kato, R. B., & Leite, F. H. A. (2021). Identification of potential Leishmania chagasi superoxide dismutase allosteric modulators by structure-based computational approaches: Homology modelling, molecular dynamics and pharmacophore-based virtual screening. Journal of Biomolecular Structure & Dynamics, 39(18), 7000–7016. https://doi.org/10.1080/07391102.2020.1804453
  • Syed, Y. Y. (2020). Zanubrutinib: First approval. Drugs, 80(1), 91–97. https://doi.org/10.1007/s40265-019-01252-4
  • Tejeda, M., Gaál, D., Hullán, L., Hegymegi-Barakonyi, B., & Kéri, G. (2006). Evaluation of the antitumor efficacy of the somatostatin structural derivative TT-232 on different tumor models. Anticancer Research, 26(5A), 3477–3483.
  • Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2003). Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics, 00(1), 2–3. https://doi.org/10.1002/0471250953.bi0203s00
  • Tripathi, A., & Kellogg, G. E. (2010). A novel and efficient tool for locating and characterizing protein cavities and binding sites. Proteins: Structure, Function, and Bioinformatics, 78(4), 825–842. https://doi.org/10.1002/prot.22608.A
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 174–182. https://doi.org/10.1002/jcc
  • Valentini, G., Chiarelli, L., Fortin, R., Speranza, M. L., Galizzi, A., & Mattevi, A. (2000). The allosteric regulation of pyruvate kinase: A site-directed mutagenesis study. The Journal of Biological Chemistry, 275(24), 18145–18152. https://doi.org/10.1074/jbc.M001870200
  • Vishveshwara, S., Ghosh, A., & Hansia, P. (2009). Intra and inter-molecular communications through protein structure network. Current Protein & Peptide Science, 10(2), 146–160. https://doi.org/10.2174/138920309787847590
  • Visualizer, D. S. (2005). v4. 0.100. 13345. In Accelrys Software Inc.
  • Wang, J., Wang, W., Kollman, P. a., & Case, D. a. (2001). Antechamber, an accessory software package for molecular mechanical calculations. Journal of the American Chemical Society., 222, U403.
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Weng, Y. L., Naik, S. R., Dingelstad, N., Lugo, M. R., Kalyaanamoorthy, S., & Ganesan, A. (2021). Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity. Scientific Reports, 11(1), 1–22. https://doi.org/10.1038/s41598-021-86471-0
  • Wodak, S. J., Paci, E., Dokholyan, N. V., Berezovsky, I. N., Horovitz, A., Li, J., Hilser, V. J., Bahar, I., Karanicolas, J., Stock, G., Hamm, P., Stote, R. H., Eberhardt, J., Chebaro, Y., Dejaegere, A., Cecchini, M., Changeux, J. P., Bolhuis, P. G., Vreede, J., … McLeish, T. (2019). Allostery in its many disguises: From theory to applications. Structure (London, England: 1993), 27(4), 566–578. https://doi.org/10.1016/j.str.2019.01.003
  • Wrobleski, S. T., Moslin, R., Lin, S., Zhang, Y., Spergel, S., Kempson, J., Tokarski, J. S., Strnad, J., Zupa-Fernandez, A., Cheng, L., Shuster, D., Gillooly, K., Yang, X., Heimrich, E., McIntyre, K. W., Chaudhry, C., Khan, J., Ruzanov, M., Tredup, J., … Weinstein, D. S. (2019). Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. Journal of Medicinal Chemistry, 62(20), 8973–8995. https://doi.org/10.1021/acs.jmedchem.9b00444
  • Yuce, M., Cicek, E., Inan, T., Dag, A. B., Kurkcuoglu, O., & Sungur, F. A. (2021). Repurposing of FDA-approved drugs against active site and potential allosteric drug-binding sites of COVID-19 main protease. Proteins, 89(11), 1425–1441. https://doi.org/10.1002/prot.26164
  • Zhong, W., Cui, L., Goh, B. C., Cai, Q., Ho, P., Chionh, Y. H., Yuan, M., Sahili, A., El, Fothergill-Gilmore, L. A., Walkinshaw, M. D., Lescar, J., & Dedon, P. C. (2017). Allosteric pyruvate kinase-based “logic gate” synergistically senses energy and sugar levels in Mycobacterium tuberculosis. Nature Communications, 8(1), 1–14. https://doi.org/10.1038/s41467-017-02086-y
  • Zoraghi, R., Worrall, L., See, R. H., Strangman, W., Popplewell, W. L., Gong, H., Samaai, T., Swayze, R. D., Kaur, S., Vuckovic, M., Finlay, B. B., Brunham, R. C., McMaster, W. R., Davies-Coleman, M. T., Strynadka, N. C., Andersen, R. J., & Reiner, N. E. (2011). Methicillin-resistant Staphylococcus aureus (MRSA) pyruvate kinase as a target for bis-indole alkaloids with antibacterial activities. The Journal of Biological Chemistry, 286(52), 44716–44725. https://doi.org/10.1074/jbc.M111.289033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.