144
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A closer look at the mode of binding of drug pemetrexed with CT-DNA

, & ORCID Icon
Pages 3553-3561 | Received 24 Dec 2021, Accepted 05 Mar 2022, Published online: 17 Mar 2022

References

  • Adjei, A. A. (2004). Pharmacology and mechanism of action of pemetrexed. Clinical Lung Cancer, 5, S51–S55. https://doi.org/10.3816/CLC.2004.s.003
  • Ajaz, A., & Ahmad, M. (2018). Deciphering the mechanism of interaction of edifenphos with calf thymus DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 188, 244–251. https://doi.org/10.1016/j.saa.2017.07.014
  • Amin, A., Ahmad, A., & Ahmad, M. (2021). Toxicity assessment of carmine and its interaction with calf thymus DNA. Journal of Biomolecular Structure & Dynamics, 39(16), 5861–5871. https://doi.org/10.1080/07391102.2020.1794962
  • Ares, L. P., Bezares, S., Tabernero, J. M., Castellanos, D., & Funes, H. C. (2003). Review of a promising new agent-pemetrexed disodium. Cancer, 97(8 Suppl), 2056–2063. https://doi.org/10.1002/cncr.11279
  • Barcelo, F., Capo, D., & Portugal, J. (2002). Influence of substituent modifications on the binding of 2-amino-1, 8-naphthyridines to cytosine opposite an AP site in DNA duplexes: Thermodynamic characterization. Nucleic Acids Research, 30(20), 4567–4573. https://doi.org/10.1093/nar/gkf558
  • Bard, A. J., & Faulkner, L. R. (1980). Electrochemical methods: Fundamentals and applications. Wiley.
  • Chao, J., Zhang, Y., Wang, H., Zhang, Y., Huo, F., Yin, C., Qin, L., & Wang, Y. (2013). Fluorescent Red GK as a fluorescent probe for selective detection of bisulfite anions. Sensors and Actuators B: Chemical, 188, 200–206. https://doi.org/10.1016/j.snb.2013.06.102
  • Chattopadhyay, S., Moran, R. G., & Goldman, I. D. (2007). Pemetrexed: Biochemical and cellular pharmacology, mechanisms, and clinical applications. Molecular Cancer Therapeutics, 6(2), 404–417. https://doi.org/10.1158/1535-7163.MCT-06-0343
  • Gaber, M., El-Ghamry, H. A., & Fathalla, S. K. (2020). Synthesis, structural identification, DNA interaction and biological studies of divalent Mn, Co and Ni chelates of 3‐amino‐5‐mercapto‐1, 2, 4‐triazole azo ligand. Applied Organometallic Chemistry, 34(8), e5678. https://doi.org/10.1002/aoc.5678
  • Goldman, D., & Zhao, R. (2002). Molecular, biochemical, and cellular pharmacology of pemetrexed. Seminars in Oncology, 29(6 Suppl 18), 3–17. https://doi.org/10.1016/S0093-7754(02)70040-7
  • Irshad, A., Ahmad, A., & Ahmad, M. (2016). Binding properties of pendimethalin herbicide to DNA: Multispectroscopic and molecular docking approaches. Physical Chemistry Chemical Physics : PCCP, 18(9), 6476–6485. https://doi.org/10.1039/c5cp07351k
  • Joerger, M., Omlin, A., Cerny, T., & Früh, M. (2010). The role of pemetrexed in advanced non small-cell lung cancer: Special focus on pharmacology and mechanism of action. Current Drug Targets, 11(1), 37–47. https://doi.org/10.2174/138945010790030974
  • Kalaivani, P., Prabhakaran, R., Kaveri, M. V., Huang, R., Staples, R. J., & Natarajan, K. (2013). Synthesis, spectral, X-ray crystallography, electrochemistry, DNA/protein binding and radical scavenging activity of new palladium(II) complexes containing triphenylarsine. Inorganica Chimica Acta, 405, 415–426. https://doi.org/10.1016/j.ica.2013.06.038
  • Khajeh, M. A., Dehghan, G., Dastmalchi, S., Shaghaghi, M., & Iranshahi, M. (2018). Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192, 384–392. https://doi.org/10.1016/j.saa.2017.11.042
  • Lakowitcz, J. R. (1999). Principles of fluorescence spectroscopy (pp. 237–259). Plenum Press.
  • Leva, F. S. D., Novellino, E., Cavalli, A., Parrinello, M., & Limongelli, V. (2014). Mechanistic insight into ligand binding to G-quadruplex DNA. Nucleic Acids Research, 42(9), 5447–5455. https://doi.org/10.1093/nar/gku247
  • Li, S., Pan, J., Zhang, G., Xu, J., & Gong, D. (2017). Characterization of the groove binding between di-(2-ethylhexyl) phthalate and calf thymus DNA. International Journal of Biological Macromolecules, 101, 736–746. https://doi.org/10.1016/j.ijbiomac.2017.03.136
  • Ling, X., Zhong, W., Huang, Q., & Ni, K. (2008). Spectroscopic studies on the interaction of pazufloxacin with calf thymus DNA. Journal of Photochemistry and Photobiology. B, Biology, 93(3), 172–176. https://doi.org/10.1016/j.jphotobiol.2008.07.008
  • Liu, W., Lin, C., Wu, G., Dai, J., Chang, T., & Yang, D. (2019). Structures of 1:1 and 2:1 complexes of BMVC and MYC promoter G-quadruplex reveal a mechanism of ligand conformation adjustment for G4-recognition. Nucleic Acids Research, 47(22), 11931–11942. https://doi.org/10.1093/nar/gkz1015
  • Ma, Y., Zhang, G., & Pan, J. (2012). Spectroscopic studies of DNA interactions with food colorant indigo carmine with the use of ethidium bromide as a fluorescence probe. Journal of Agricultural and Food Chemistry, 60(43), 10867–10875. https://doi.org/10.1021/jf303698k
  • Mårtensson, A. K. F., & Lincoln, P. (2018). Competitive DNA binding of Ru(bpy)2dppz2+ enantiomers studied with isothermal titration calorimetry (ITC) using a direct and general binding isotherm algorithm. Physical Chemistry Chemical Physics: PCCP, 20(12), 7920–7930. https://doi.org/10.1039/c7cp03184j
  • Mirzaei-Kalar, Z. (2018). In vitro binding interaction of atorvastatin with calf thymus DNA: multispectroscopic, gel electrophoresis and molecular docking studies. Journal of Pharmaceutical and Biomedical Analysis, 161, 101–109. https://doi.org/10.1016/j.jpba.2018.08.033
  • Mukherjee, A., & Singh, B. (2017). Binding interaction of pharmaceutical drug captopril with calf thymus DNA: A multispectroscopic and molecular docking study. Journal of Luminescence, 190, 319–327. https://doi.org/10.1016/j.jlumin.2017.05.068
  • Najbar, J., & Mac, M. (1991). Mechanisms of fluorescence quenching of aromatic molecules by potassium iodide and potassium bromide in methanol–ethanol solutions. Faraday Transactions, 87(10), 1523–1529. https://doi.org/10.1039/FT9918701523
  • Parisa, F. J., & Dorraji, S. (2017). Interaction of anthelmintic drug (thiabendazole) with DNA: Spectroscopic and molecular modeling studies. Arabian Journal of Chemistry, 10(2017), S3947–S3954. https://doi.org/10.1016/j.arabjc.2014.06.001
  • Ponkarpagam, S., Mahalakshmi, G., Vennila, K. N., & Elango, K. P. (2020). Multi-spectroscopic, voltammetric and molecular docking studies on binding of anti-diabetic drug rosigiltazone with DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 234, 118268. https://doi.org/10.1016/j.saa.2020.118268
  • Ponkarpagam, S., Mahalakshmi, G., Vennila, K. N., & Elango, K. P. (2021). Concentration-dependent mode of binding of drug oxatomide with DNA: Multi-spectroscopic, voltammetric and metadynamics simulation analysis. Journal of Biomolecular Structure and Dynamics, 1–11. https://doi.org/10.1080/07391102.2021.191186.
  • Qais, F. A., Abdullah, K. M., Alam, M. M., Naseem, I., & Ahmad, I. (2017). Interaction of capsaicin with calf thymus DNA: A multi-spectroscopic and molecular modelling study. International Journal of Biological Macromolecules, 97, 392–402. https://doi.org/10.1016/j.ijbiomac.2017.01.022
  • Sahoo, B. K., Ghosh, K. S., Bera, R., & Dasgupta, S. (2008). Studies on the interaction of diacetylcurcumin with calf thymus-DNA. Chemical Physics, 351(1–3), 163–169. https://doi.org/10.1016/j.chemphys.2008.05.008
  • Şenel, P., Agar, S., İş, Y. S., Altay, F., Gölcü, A., & Yurtsever, M. (2022). Deciphering the mechanism and binding interactions of Pemetrexed with dsDNA with DNA-targeted chemotherapeutics via spectroscopic, analytical, and simulation studies. Journal of Pharmaceutical and Biomedical Analysis, 209, 114490.
  • Shorter, J. (1982). Correlation analysis of organic reactivity with particular reference to multiple regressions. John Wiley & Sons.
  • Sun, Y. T., Bi, S. Y., Song, D. Q., Qiao, C. Y., Mu, D., & Zhang, H. Q. (2008). Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi. Sensors and Actuators. B, Chemical, 129(2), 799–810. https://doi.org/10.1016/j.snb.2007.09.082
  • Wu, D., Duan, R., Tang, L., Zhou, D., Zeng, Z., Wu, W., Hu, J., & Sun, Q. (2022). In-vitro binding analysis and inhibitory effect of capsaicin on lipase. LWT, 154, 112674. https://doi.org/10.1016/j.lwt.2021.112674
  • Wu, D., Liu, D., Zhang, Y., Zhang, Z., & Li, H. (2018). Unravelling the binding mechanism of benproperine with human serum albumin: A docking, fluorometric, and thermodynamic approach. European Journal of Medicinal Chemistry, 146, 245–250.
  • Wu, D., Tang, L., Duan, R., Hu, X., Geng, F., Zhang, Y., Peng, L., & Li, H. (2021). Interaction mechanisms and structure-affinity relationships between hyperoside and soybean β-conglycinin and glycinin. Food Chemistry, 347, 129052. https://doi.org/10.1016/j.foodchem.2021.129052
  • Zia, M., Hameed, S., Ahmad, I., Tabassum, N., & Yousaf, S. (2020). Synthesis, characterization, electrochemical and DNA binding studies of regio-isomeric sulfonyl esters of substituted isoxazoles. Journal of Molecular Structure, 1202, 127230. https://doi.org/10.1016/j.molstruc.2019.127230

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.