304
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular insights of hyaluronic acid – ethambutol and hyaluronic acid – isoniazid drug conjugates act as promising novel drugs for the treatment of tuberculosis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 3562-3573 | Received 19 Jan 2022, Accepted 05 Mar 2022, Published online: 16 Mar 2022

References

  • ACD. (2021). ACD/ChemSketch version 2021.1. 0, Advanced Chemistry Development, Inc., Toronto, ON, Canada, www.acdlabs.com.
  • Diacon, A., Miyahara, S., Dawson, R., Sun, X., Hogg, E., Donahue, K., Urbanowski, M., De Jager, V., Fletcher, C. V., Hafner, R., Swindells, S., & Bishai, W. (2020). Assessing whether isoniazid is essential during the first 14 days of tuberculosis therapy: A phase 2a, open-label, randomised controlled trial. Lancet Microbe,1, e84–e87. https://www.thelancet.com/pdfs/journals/lanmic/PIIS2666-5247(20)30011-2.pdf
  • Augenstreich, J., Haanappel, E., Ferre, G., Czaplicki, G., Jolibois, F., Destainville, N., Guilhot, C., Milon, A., Astarie-Dequeker, C., & Chavent, M. (2019). The conical shape of DIM lipids promotes Mycobacterium tuberculosis infection of macrophages. Proceedings of the National Academy of Sciences of the United States of America, 116(51), 25649–25658. https://doi.org/10.1073/pnas.1910368116
  • Badrinath, M., & John, S. (2022). Isoniazid toxicity. In StatPearls. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK531488/
  • Berellini, G., Waters, N. J., & Lombard, F. (2012). In silico prediction of total human plasma clearance. Journal of Chemical Information and Modeling, 52(8), 2069–2078. https://doi.org/10.1021/ci300155y
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., & Darst, S. A. (2001). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 104(6), 901–912. https://doi.org/10.1016/S0092-8674(01)00286-0
  • Chandrasekaran, B., Abed, S. N., Al-Attraqchi, O., Kuche, K., & Tekade, R. K. (2018). Computer-aided prediction of pharmacokinetic (ADMET) properties., In Dosage form design parameters (pp. 731–755). Academic Press.
  • Cloete, R., Kapp, E., Joubert, J., Christoffels, A., Malan, S. F., & Soares, C. M. (2018). Molecular modelling and simulation studies of the Mycobacterium tuberculosis multidrug efflux pump protein Rv1258c. PloS One, 13(11), e0207605. https://doi.org/10.1371/journal.pone.0207605
  • Park, D., Kim, Y., Kim, H., Kim, K., Lee, Y.-S., Choe, J., Hahn, J.-H., Lee, H., Jeon, J., Choi, C., Kim, Y.-M., & Jeoung, D. (2012). Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ. Molecules and Cells, 33(6), 563–574. 2012,https://doi.org/10.1007/s10059-012-2294-1
  • Ellard, G. A., & Gammon, P. T. (1976). Pharmacokinetics of isoniazid metabolism in man. Journal of Pharmacokinetics and Biopharmaceutics, 4(2), 83–113. https://doi.org/10.1007/BF01086149
  • Gawrisch, K. (2019). Mycobacterium tuberculosis enters macrophages with aid from a bacterial lipid. Proceedings of the National Academy of Sciences of the United States of America, 116(51), 25372–25373. https://doi.org/10.1073/pnas.1918900116
  • McIlleron, H., Meintjes, G., Burman, W. J., & Maartens, G. (2007). Complications of antiretroviral therapy in patients with tuberculosis: Drug interactions, toxicity, and immune reconstitution inflammatory syndrome. The Journal of Infectious Diseases, 196(s1), S63–S75. https://doi.org/10.1086/518655
  • Holstege, C. P. (2014). Rifampin, Encyclopedia of toxicology (pp. 134–136). 3rd ed. Elsevier.
  • Issa, N. T., Wathieu, H., Ojo, A., Byers, S. W., & Dakshanamurthy, S. (2017). Drug metabolism in preclinical drug development: A survey of the discovery process, toxicology, and computational tools. Current Drug Metabolism, 18(6), 556–565. https://doi.org/10.2174/1389200218666170316093301
  • Khan, R., Mahendhiran, B., & Aroulmoji, V. (2013). Chemistry of hyaluronic acid and its significance in drug delivery strategies: A review. International Journal of Pharmaceutical Sciences and Research, 4, 3699–3710. http://dx.doi.org/10.13040/IJPSR.0975-8232.4(10).3699-1
  • Khan, R., & Paul Konowicz, A. (1996). A Dicarboxylic acid hemiester or hemiamide with a pharmacologically active compound and with hyaluronic acid or with a hyaluronic acid ester, a process for its preparation and a controlled release medicament containing this derivative. WO1996035721 A1. https://patents.google.com/patent/WO1996035721A1/en
  • Kogan, G., Soltes, L., Stern, R., & Gemeiner, P. (2007). Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology Letters, 29(1), 17–25. https://doi.org/10.1007/s10529-006-9219-z
  • Lawrance, W., Banerji, S., Day, A. J., Bhattacharjee, S., & Jackson, D. G. (2016). Binding of hyaluronan to the native lymphatic vessel endothelial receptor LYVE-1 is critically dependent on Receptor Clustering and Hyaluronan Organization. The Journal of Biological Chemistry, 291(15), 8014–8030. https://doi.org/10.1074/jbc.M115.708305
  • Lewis, D. H. (1990). Controlled Release of Bioactive Agents from Lactide/Glycolide Polymers. Biodegradable polymers as drug delivery systems (pp. 1–41), edited by M. Chasin, and R. Langer (Eds.). Marcel Dekker.
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Makunyane, P., & Mathebula, S. (2016). Update on ocular toxicity of ethambutol. African Vision and Eye Health, 75(1), a353. https://doi.org/10.4102/aveh.v75i1.353
  • Murano, E., Perin, D., Khan, R., & Bergamin, M. (2011). Hyaluronan: From biomimetic to industrial business strategy. Natural Product Communications, 6(4), 555–572. https://doi.org/10.1177/1934578X1100600415
  • New data on tuberculosis trends in 202 countries. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-report-2019
  • Norbedo, S., Dinon, F., Bergamin, M., Bosi, S., Aroulmoji, V., Khan, R., & Murano, E. (2009). Synthesis of 6-amino-6-deoxyhyaluronan as an intermediate for conjugation with carboxylate-containing compounds: Application to hyaluronan-camptothecin conjugates. Carbohydrate Research, 344(1), 98–104. https://doi.org/10.1016/j.carres.2008.09.027
  • O’Hara, P., & Hickey, A. J. (2000). Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: Manufacture and characterization. Pharmaceutical Research, 8, 955–961. https://doi.org/10.1023/a:1007527204887
  • Swain, S. S., Paidesetty, S. K., Padhy, R. N., & Hussain, T. (2020). Isoniazid‐phytochemical conjugation: A new approach for potent and less toxic anti‐TB drug development. Chemical Biology & Drug Design, 96(2), 502–714. https://doi.org/10.1111/cbdd.13685
  • Pandey, M. S., & Weigel, P. H. (2014). Hyaluronic acid receptor for endocytosis (HARE)-mediated endocytosis of hyaluronan, heparin, dermatan sulfate, and acetylated low density lipoprotein (AcLDL), but not chondroitin sulfate types A, C, D, or E, activates NF-κB-regulated gene expression. The Journal of Biological Chemistry, 289(3), 1756–1767. https://doi.org/10.1074/jbc.M113.510339
  • Pitaloka, D. A. E., Ramadhan, D. S. F., Arfan, Chaidir, L., & Fakih, T. M. (2021). Docking-based virtual screening and molecular dynamics simulations of quercetin analogs as enoyl-acyl carrier protein reductase (InhA) inhibitors of mycobacterium tuberculosis. Scientia Pharmaceutica, 89(2), 20. https://doi.org/10.3390/scipharm89020020
  • Pricopie, A.-I., Ionuț, I., Marc, G., Arseniu, A.-M., Vlase, L., Grozav, A., Găină, L. I., Vodnar, D. C., Pîrnău, A., Tiperciuc, B., & Oniga, O. (2019). Design and synthesis of novel 1,3-thiazole and 2- hydrazinyl-1,3-thiazole derivatives as anti-candida agents: In vitro antifungal screening, molecular docking study, and spectroscopic investigation of their binding interaction with. Bovine Serum Albumin Molecules, 24(19), 3435. https://doi.org/10.3390/molecules24193435
  • Van Crevel, R., & Hill, P. C. (2017). 31 – Tuberculosis, infectious diseases (4th ed., Vol. 1, pp. 271–284.e).
  • Khan, R., Aroulmoji, V., Sivasankar, C., & Deepa, M. (2020). Hyaluronic acid – TB drug conjugates for the treatment of active tuberculosis disease. International Journal of Advanced Science and Engineering, 7(1), 1625–1628. https://doi.org/10.29294/IJASE.7.1.2020.1625-1628
  • Rothstein, D. M. (2016). Rifamycins, Alone and in Combination. Cold Spring Harbor Perspectives in Medicine, 6(7), a027011. https://doi.org/10.1101/cshperspect.a027011
  • Shaw, D. E., Dror, R. O., Salmon, J. K., Grossman, J. P., MacKenzie, K. M., Bank, J. A., Young, C., Deneroff, M. M., Batson, B., Bowers, K. J., Chow, E., Eastwood, M. P., Ierardi, D. J., Klepeis, J. L., Kuskin, J. S., Larson, R. H., Lindorff-Larsen, K., Maragakis, P., Moraes, M. A., … Towles, B. (2009). Millisecond-scale molecular dynamics simulations on Anton. In Proc. Conf. High Perform. Comput. Networking, Storage Anal. SC ’09, 2009 (pp. 1–11). https://doi.org/10.1145/1654059.1654126
  • Skandalis, S. S., Karalis, T., & Heldin, P. (2020). Intracellular hyaluronan: Importance for cellular functions. Seminars in Cancer Biology, 62, 20–30. https://doi.org/10.1016/j.semcancer.2019.07.002
  • Sorbi, C., Bergamin, M., Bosi, S., Dinon, F., Aroulmoji, V., Khan, R., Murano, E., & Norbedo, S. (2009). Synthesis of 6-O-methotrexylhyaluronan as a drug delivery system. Carbohydrate Research, 344(1), 91–97. https://doi.org/10.1016/j.carres.2008.09.021
  • Srivastava, S., Musuka, S., Sherman, C., Meek, C., Leff, R., & Gumbo, T. (2010). Efflux-pump-derived multiple drug resistance to ethambutol monotherapy in Mycobacterium tuberculosis and the pharmacokinetics and pharmacodynamics of ethambutol . The Journal of Infectious Diseases, 201(8), 1225–1231. 201,https://doi.org/10.1086/651377
  • Stierand, K., Maass, P. C., & Rarey, M. (2006). Molecular complexes at a glance: Automated generation of two-dimensional complex diagrams. Bioinformatics (Oxford, England), 22(14), 1710–1716. https://doi.org/10.1093/bioinformatics/btl150
  • Thirumalaisamy, R., Aroulmoji, V., Iqbal, M. N., Deepa, M., Sivasankar, C., Khan, R., & Selvankumar, T. (2021). Molecular insights of hyaluronic acid-hydroxychloroquine conjugate as a promising drug in targeting SARS-CoV-2 viral proteins. Journal of Molecular Structure, 1238, 130457. https://doi.org/10.1016/j.molstruc.2021.130457
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), NA–NA. https://doi.org/10.1002/jcc.21334
  • Underhill, C. (1992). CD44: The hyaluronan receptor. Journal of Cell Science, 103(2), 293–288. https://doi.org/10.1242/jcs.103.2.293
  • Dartois, V., & Barry, C. E. (2010). Clinical pharmacology and lesion penetrating properties of second- and third-line antituberculous agents used in the management of multidrug-resistant (MDR) and extensively-drug resistant (XDR) tuberculosis. Current Clinical Pharmacology, 5(2), 96–114. https://doi.org/10.2174/157488410791110797
  • Wang, S., Li, Y., Wang, J., Chen, L., Zhang, L., Yu, H., & Hou, T. (2012). ADMET evaluation in drug discovery. 12. Development of binary classification models for prediction of hERG potassium channel blockage. Molecular Pharmaceutics, 9(4), 996–1010. https://doi.org/10.1021/mp300023x
  • Weber, W. W., & Hein, D. W. (1979). Clinical pharmacokinetics of isoniazid. Clinical Pharmacokinetics, 4(6), 401–422. https://doi.org/10.2165/00003088-197904060-00001.
  • Weininger, D. (1988). SMILES, a chemical language and information system: 1: Introduction to methodology and encoding rules. Journal of Chemical Information and Modeling, 28(1), 31–36. https://doi.org/10.1021/ci00057a005
  • WHO treatment guidelines for isoniazid-resistant tuberculosis: Supplement to the WHO treatment guidelines for drug-resistant tuberculosis. (2018). http://www.who.int/tb/publications/2018/WHO_guidelines_isoniazid_resistant_TB/en/.
  • Zhang, Y., Wade, M. M., Scorpio, A., Zhang, H., & Sun, Z. (2003). Mode of action of pyrazinamide: Disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. The Journal of Antimicrobial Chemotherapy, 52(5), 790–795. https://doi.org/10.1093/jac/dkg446
  • Zimhony, O., Cox, J. S., Welch, J. T., Vilchèze, C., & Jacobs, W. R. (2000). Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nature Medicine, 6(9), 1043–1047. https://doi.org/10.1038/79558

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.