335
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Molecular structure determination, spectroscopic, quantum computational studies and molecular docking of 4-(E)-[2-(benzylamino)phenylimino) methyl-2]ethoxy phenol

, , , &
Pages 3574-3590 | Received 24 Sep 2021, Accepted 05 Mar 2022, Published online: 23 Mar 2022

References

  • Alaşalvar, C., Soylu, M. S., Güder, A., Albayrak, Ç., Apaydın, G., & Dilek, N. (2014). Crystal structure, DFT and HF calculations and radical scavenging activities of (E)-4,6-dibromo-3-methoxy-2-[(3-methoxyphenylimino)methyl]phenol. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 125, 319–327. https://doi.org/10.1016/j.saa.2014.01.104
  • Alyar, H., Unal, A., Ozbek, N., Alyar, S., & Karacan, N. (2012). Conformational analysis, vibrational and NMR spectroscopic study of the methanesulfonamide-N,N'-1,2-ethanediylbis. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 91, 39–47. https://doi.org/10.1016/j.saa.2012.01.065
  • Andiappan, K., Sanmugam, A., Deivanayagam, E., Karuppasamy, K., Kim, H. S., & Vikraman, D. (2018). In vitro cytotoxicity activity of novel Schiff base ligand–lanthanide complexes. Scientific Reports, 8(1), 12. https://doi.org/10.1038/s41598-018-21366-1
  • Andzelm, J., & Wimmer, E. (1992). Density functional Gaussian‐type‐orbital approach to molecular geometries, vibrations, and reaction energies. The Journal of Chemical Physics, 96(2), 1280–1303. https://doi.org/10.1063/1.462165
  • Bagihalli, G. B., Avaji, P. G., Patil, S. A., & Badami, P. S. (2008). Synthesis, spectral characterization, in vitro antibacterial, antifungal and cytotoxic activities of Co(II), Ni(II) and Cu(II) complexes with 1,2,4-triazole Schiff bases. European Journal of Medicinal Chemistry, 43(12), 2639–2649. https://doi.org/10.1016/j.ejmech.2008.02.013
  • Bazgier, V., Berka, K., Otyepka, M., & Banas, P. (2016). Exponential repulsion improves structural predictability of molecular docking. Journal of Computational Chemistry, 37(28), 2485–2494. https://doi.org/10.1002/jcc.24473
  • Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 98(2), 1372–1377. https://doi.org/10.1063/1.464304
  • Bellamy, L. J. (1975). The infra-red spectra of complex molecules. 3rd ed. Wiley.
  • Bharanidharan, S., Saleem, H., Subashchandrabose, S., Suresh, M., Nathiya, A., & Padusha, M. S. A. (2016). Vibrational spectral analysis and first order hyperpolarizability calculations on (e)-n′-(furan-2-yl Methylene) nicotinohydrazide. Journal of New Developments in Chemistry, 1(1), 1–25. 10.14302/issn.2377-2549.jndc-16-949
  • Bk, A.-S., Gata, R. A., & Asker, K. A. (2017). Synthesis spectral, thermal stability and bacterial activity of schiff base derived from selective amino acid and their complexes. Pelagia Research Libray, 8, 4–12.
  • Ceylan, Ü., Tarı, G. Ö., Gökce, H., & Ağar, E. (2016). Spectroscopic (FT–IR and UV–Vis) and theoretical (HF and DFT) investigation of 2-Ethyl-N-[(5-nitrothiophene-2-yl) methylidene] aniline. Journal of Molecular Structure, 1110, 1–10. https://doi.org/10.1016/j.molstruc.2016.01.019
  • Chamundeeswari, S. P. V., Samuel, E. R. J. J., & Sundaraganesan, N. (2011). Theoretical and experimental studies on 2-(2-methyl-5-nitro-1-imidazolyl) ethanol. European Journal of Chemistry, 2(2), 136–145. https://doi.org/10.5155/eurjchem.2.2.136-145.169
  • Colthup, N. B., Daly, L. H., & Wiberley, S. E. (1964). Introduction to infrared and Raman spectroscopy. Academic Press.
  • Dabbagh, H. A., Teimouri, A., Chermahini, A. N., & Shahraki, M. (2008). DFT and ab initio study of structure of dyes derived from 2-hydroxy and 2,4-dihydroxy benzoic acids. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 69(2), 449–459. https://doi.org/10.1016/j.saa.2007.04.024
  • Daisy, P., Vijayalakshmi, P., Selvaraj, C., Singh, S. K., & Saipriya, K. (2012). Targeting multidrug resistant Mycobacterium tuberculosis HtrA2 with identical chemical entities of fluoroquinolones. Indian Journal of Pharmaceutical Sciences, 74(3), 217–222. https://doi.org/10.4103/0250-474X.106063
  • Dennington, R., Keith, T., & Millam, J. G. (2009). Version 5. Semichem Inc.
  • Destri, S., Khotina, I. A., & Porzio, W. (1998). 3-hexyl tetra-substituted sesquithienylene − phenylene polyazomethines with high molecular weight. Mechanistic considerations. Macromolecules, 31(4), 1079–1086. https://doi.org/10.1021/ma970756r
  • Di Muzio, E., Toti, D., & Polticelli, F. (2017). DockingApp: A user friendly interface for facilitated docking simulations with AutoDock Vina. Journal of Computer-Aided Molecular Design, 31(2), 213–218. https://doi.org/10.1007/s10822-016-0006-1
  • Dickson, R. M., & Becke, A. D. (1993). Basis‐set‐free local density‐functional calculations of geometries of polyatomic molecules. The Journal of Chemical Physics, 99(5), 3898–3905. https://doi.org/10.1063/1.466134
  • Dollish, F. R., Fateley., & Bentley, F. F. (1997). WG characteristic Raman frequencies of organic compounds. Wiley.
  • Drozdzak, R., Allaert, B., Ledoux, N., Dragutan, I., Dragutan, V., & Verpoort, F. (2005). Ruthenium (III) complexes with N-(acetyl)-N′-(5-R-salicylidene). Coordination Chemistry Reviews, 249(24), 3055–3168. https://doi.org/10.1016/j.ccr.2005.05.003
  • Emregul, K. C., Duzgun, E., & Atakol, O. (2006). The application of some polydentate Schiff base compounds containing aminic nitrogens as corrosion inhibitors for mild steel in acidic media. Corrosion Science, 48(10), 3243–3260. https://doi.org/10.1016/j.corsci.2005.11.016
  • Fitzgerald, G., & Andzelm, J. (1991). Chemical applications of density functional theory: Comparison to experiment, Hartree-Fock, and perturbation theory. The Journal of Physical Chemistry, 95(26), 10531–10534. https://doi.org/10.1021/j100179a003
  • Frisch, M. J. E. A. (2004). Gaussian 03 Rev. E. 01. Gaussian Inc Wallingford.
  • Frisch, M. J., Pople, J. A., & Binkley, J. S. (1984). Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of Chemical Physics, 80(7), 3265–3269. https://doi.org/10.1063/1.447079
  • Glendening, E. D., Reed, A. E., Carpenter, J. E., & Weinhold, F. (1998). Nbo Version 3.1, Tci. University of Wisconsin.
  • Gopi, C., Sastry, V. G., & Dhanaraju, M. D. (2017). Synthesis, spectroscopic characterization, X-ray crystallography, structural activity relationship and antimicrobial activity of some novel 4-(5-(10-(3-N, N-dimethylamino) propyl)-10H-phenothiazine-3-yl)-1, 3, 4-thiadiazole-2-yl) Azo dye/Schiff base derivatives. Future Journal of Pharmaceutical Sciences, 3(2), 79–89. https://doi.org/10.1016/j.fjps.2017.04.002
  • Grigoras, M., Catanescu, O., & Simionescu, C. I. (2001). Poly (azomethine) s. Revue Roumaine de Chimie, 46, 927–939.
  • Guo, L., Yan, Z., Zheng, X., Hu, L., Yang, Y., & Wang, J. (2014). A comparison of various optimization algorithms of proteinligand docking programs by fitness accuracy. Journal of Molecular Modeling, 20, 2251–2261. https://doi.org/10.1007/s00894-014-2251-3
  • Hajam, T. A., Saleem, H., Padhusha, M. S. A., & Mohammed Ameen, K. K. (2020). Synthesis, quantum chemical calculations and molecular docking studies of 2-ethoxy-4 [(2-trifluromethyl-phenylimino) methyl] phenol. Molecular Physics, 118, e1781945. https://doi.org/10.1080/00268976.2020.1781945
  • Hajam, T. A., Saleem, H., Syed Ali Padhusha, M., & Mohammed Ameen, K. K. (2021). Quantum mechanical study, spectroscopic (FT-IR, FT-Raman and UV-Vis) study, NBO, NLO analysis and molecular docking studies of 2-ethoxy-4-(pyridine-2yliminomethyl)-phenol. Polycyclic Aromatic Compounds, 1–24. https://doi.org/10.1080/10406638.2021.1896561
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Heo, L., Shin, W. H., Lee, M. S., & Seok, C. (2014). GalaxySite: Ligand-binding-site prediction by using molecular docking. Nucleic Acids Research, 42(Web Server issue), W210–W214. https://doi.org/10.1093/nar/gku321
  • Jalali-Heravi, M., Khandar, A. A., & Sheikshoaie, I. (1999). A theoretical investigation of the structure, electronic properties and second-order nonlinearity of some azo Schiff base ligands and their monoanions. Spectrochim Acta Part A, 55(12), 2537–2544. https://doi.org/10.1016/S1386-1425(99)00044-X
  • Jamroz, M. H. (2004). Vibrational energy distribution analysis VEDA 4, Warsaw.
  • Jarrahpour, A., Khalili, D., De Clercq, E., Salmi, C., & Brunel, J. M. (2007). Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules (Basel, Switzerland), 12(8), 1720–1730. https://doi.org/10.3390/12081720
  • Jean, Y., & Volatron, F. (2005). An introduction to molecular orbitals. Oxford University Press.
  • Johnson, B. G., Gill, P. M., & Pople, J. A. (1993). The performance of a family of density functional methods. The Journal of Chemical Physics, 98(7), 5612–5626. https://doi.org/10.1063/1.464906
  • Kanis, D. R., Ratner, M. A., & Marks, T. J. (1994). Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chemical Reviews, 94(1), 195–242. https://doi.org/10.1021/cr00025a007
  • Kaya, I., Vilayetoglu, A. R., & Mart, H. (2001). The synthesis and properties of oligosalicylaldehyde and its Schiff base oligomers. Polymer, 42(11), 4859–4865. https://doi.org/10.1016/S0032-3861(00)00883-1
  • Lambert, J. B., Shurvell, H. F., & Cooks, R. G. (1987). Introduction to organic spectroscopy. Macmillan Publishing Company.
  • Lee, S. K., Lee, I. H., Kim, H. J., Chang, G. S., Chung, J. E., & No, K. T. (2003). The PreADME Approach: Web-based program for rapid prediction of physico-chemical, drug absorption and drug-like properties. EuroQSAR 2002 Designing Drugs and Crop Protectants: Processes, Problems and Solutions, 2003, 418–420.
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • Lopez-Camacho, E., Godoy, M. J. G., Garcia-Nieto, J., Nebro, A. J., & Aldana-Montes, J. F. (2015). Solving molecular flexible docking problems with metaheuristics: A comparative study. Applied Soft Computing, 28, 379–393. https://doi.org/10.1016/j.asoc.2014.10.049
  • Lorenc, J. (2012). Dimeric structure and hydrogen bonds in 2-N-ethylamino-5-metyl-4-nitro-pyridine studied by XRD, IR and Raman methods and DFT calculations. Vibrational Spectroscopy, 61, 112–123. https://doi.org/10.1016/j.vibspec.2012.03.006
  • Madhavan, V. S., Varghese, H. T., Mathew, S., Vinsova, J., & Panicker, C. Y. (2009). FT-IR, FT-Raman and DFT calculations of 4-chloro-2-(3,4-dichlorophenylcarbamoyl)phenyl acetate . Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 72(3), 547–553. https://doi.org/10.1016/j.saa.2008.10.061
  • Merrick, J. P., Moran, D., & Radom, L. (2007). An evaluation of harmonic vibrational frequency scale factors. The Journal of Physical Chemistry A, 111(45), 11683–11700. https://doi.org/10.1021/jp073974n
  • Mukherjee, V., Singh, N. P., & Yadav, R. A. (2011). Optimized geometry and vibrational spectra and NBO analysis of solid state 2, 4, 6-tri-fluorobenzoic acid hydrogen bonded dimer. Journal of Molecular Structure, 988(1-3), 24–34. https://doi.org/10.1016/j.molstruc.2010.11.064
  • Munoz-Caro, C., Nino, A., Senent, M. L., Leal, J. M., & Ibeas, S. (2000). Modeling of protonation processes in acetohydroxamic acid. The Journal of Organic Chemistry, 65(2), 405–410. https://doi.org/10.1021/jo991251x
  • Murtaza, S., Akhtar, M. S., Kanwal, F., Abbas, A., Ashiq, S., & Shamim, S. (2017). Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent. Journal of Saudi Chemical Society, 21, S359–S372. https://doi.org/10.1016/j.jscs.2014.04.003
  • Oliphant, N., & Bartlett, R. J. (1994). A systematic comparison of molecular properties obtained using Hartree–Fock, a hybrid Hartree–Fock density‐functional‐theory, and coupled‐cluster methods. The Journal of Chemical Physics, 100(9), 6550–6561. https://doi.org/10.1063/1.467064
  • Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. A. (2014). Introduction to spectroscopy. Cengage learning.
  • Pereira, J. C., Caffarena, E. R., & Santos, C. N. D. (2016). Boosting docking-based virtual screening with deep learning. Journal of Chemical Information and Modeling, 56(12), 2495–2506. https://doi.org/10.1021/acs.jcim.6b00355
  • Pn, P., & Williams, D. J. (1991). Introduction to nonlinear optical effects in molecules and polymers (Vol. 1). Wiley.
  • Politzer P & Truhlar DG (Eds.) (2013). Chemical applications of atomic and molecular electrostatic potentials: Reactivity, structure, scattering, and energetics of organic, inorganic, and biological systems. Springer Science & Business Media.
  • Politzer, P., & Daiker, K. C. (1981). The force concept in chemistry. Van Nostrand Reinhold Co.
  • Politzer, P., Laurence, P. R., & Jayasuriya, K. (1985). Molecular electrostatic potentials: An effective tool for the elucidation of biochemical phenomena. Environmental Health Perspectives, 61, 191–202. https://doi.org/10.1289/ehp.8561191
  • Politzer, P., & Murray, J. S. (2002). The fundamental nature and role of the electrostatic potential in atoms and molecules. Theoretical Chemistry Accounts, 108(3), 134–142. https://doi.org/10.1007/s00214-002-0363-9
  • Qin, W., Long, S., Panunzio, M., & Biondi, S. (2013). Schiff bases: A short survey on an evergreen chemistry tool. Molecules (Basel, Switzerland), 18(10), 12264–12289. https://doi.org/10.3390/molecules181012264
  • Radom, L., & Pople, J. A. (1970). Molecular orbital theory of the electronic structure of organic compounds. IV. Internal rotation in hydrocarbons using a minimal Slater-type basis. Journal of the American Chemical Society, 92(16), 4786–4795. https://doi.org/10.1021/ja00719a005
  • Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A., & Lien, E. J. (2002). Synthesis, biological evaluation, and quantitative structure-activity relationship analysis of new Schiff bases of hydroxysemicarbazide as potential antitumor agents. Journal of Medicinal Chemistry, 45(2), 410–419. https://doi.org/10.1021/jm010252q
  • Sathyanarayana, D. N. (2015). Vibrational spectroscopy: Theory and applications. New Age International.
  • Schrodinger. (2013). GUI. Maestro.
  • Scrocco, E., & Tomasi, J. (1973). The electrostatic molecular potential as a tool for the interpretation of molecular properties. In New concepts II (pp. 95–170). Springer.
  • Scuseria, G. E. (1992). Comparison of coupled‐cluster results with a hybrid of Hartree–Fock and density functional theory. The Journal of Chemical Physics, 97(10), 7528–7530. https://doi.org/10.1063/1.463977
  • Sessler, J. L., Melfi, P. J., & Pantos, G. D. (2006). Uranium complexes of multidentate N-donor ligands. Coordination Chemistry Reviews, 250(7–8), 816–843. https://doi.org/10.1016/j.ccr.2005.10.007
  • Sharma, V., Arora, E. K., & Cardoza, S. (2016). Synthesis, antioxidant, antibacterial, and DFT study on a coumarin based salen-type Schiff base and its copper complex. Chemical Papers, 70, 1493–1502.
  • Shen, X.-H., Zhang, Z.-W., Shao, L.-J., Lian, Q., & Liu, C. (2016). Synthesis, crystal structure, and catalytic property of a copper(II) complex derived from 2-hydroxy5-methoxybenzaldehyde oxime. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 46(3), 343–346. https://doi.org/10.1080/15533174.2014.988246
  • Shin, W. H., Kim, J. K., Kim, D. S., & Seok, C. (2013). GalaxyDock2: Protein-ligand docking using beta-complex and global optimization. Journal of Computational Chemistry, 34(30), 2647–2656. https://doi.org/10.1002/jcc.23438
  • Silverstein, M., Basseler, G. C., & Morill, C. (1981). Spectrometric indentification of organic compounds. Wiley.
  • Silverstein, R. M., & Webster, F. X. (1998). Spectrometric identification of organic compounds. John Wiley & Sons.
  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies. 3rd ed. John Wiley.
  • Sousa, S. F., Cerqueira, N. M., Fernandes, P. A., & Ramos, M. J. (2010). Virtual screening in drug design and development. Combinatorial Chemistry & High Throughput Screening, 13(5), 442–453. https://doi.org/10.2174/138620710791293001
  • Stuart, B. H. (2004). Infrared spectroscopy: Fundamentals and applications. John Wiley & Sons.
  • Subashchandrabose, S., Saleem, H., Erdogdu, Y., Dereli, O., Thanikachalam, V., & Jayabharathi, J. (2012). Structural, vibrational and hyperpolarizability calculation of (E)-2-(2-hydroxybenzylideneamino)-3-methylbutanoic acid. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 86, 231–241. https://doi.org/10.1016/j.saa.2011.10.029
  • Sundaraganesan, N., Ilakiamani, S., & Joshua, B. D. (2007). Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 3,4-dimethylbenzaldehyde. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 68(3), 680–687. https://doi.org/10.1016/j.saa.2006.12.046
  • Szafran, M., Katrusiak, A., Koput, J., & Dega-Szafran, Z. (2007). X-ray, MP2 and DFT studies of the structure, vibrational and NMR spectra of homarine. Journal of Molecular Structure, 846(1–3), 1–12. https://doi.org/10.1016/j.molstruc.2007.01.003
  • Temel, E., Alaşalvar, C., Gökçe, H., Güder, A., Albayrak, Ç., Alpaslan, Y. B., Alpaslan, G., & Dilek, N. (2015). DFT calculations, spectroscopy and antioxidant activity studies on (E)-2-nitro-4-[(phenylimino) methyl] phenol. Spectrochim Acta Part A, 136, 534–546. https://doi.org/10.1016/j.saa.2014.09.067
  • Unver, H., Karakas, A., & Elmali, A. (2004). Nonlinear optical properties, spectroscopic studies and structure of 2-hydroxy-3-methoxy-N-(2-chloro-benzyl)-benzaldehyde-imine. Journal of Molecular Structure, 702(1–3), 49–54. https://doi.org/10.1016/j.molstruc.2004.06.008
  • Varsanyi, G. (1974). Assignments for vibrational spectra of seven hundred benzene derivatives (Vol. 1). John Wiley & Sons.
  • Yuriev, E., Holien, J., & Ramsland, P. A. (2015). Improvements, trends, and new ideas in molecular docking: 2012–2013 in review. Journal of Molecular Recognition: JMR, 28(10), 581–604. https://doi.org/10.1002/jmr.2471
  • Zeyrek, C. T., Alpaslan, G., Alyar, H., Yildiz, M., Dilek, N., & Unver, H. (2015). Synthesis, molecular structure, spectroscopic and theoretical studies on E-2-ethoxy-4-[(4-ethoxyphenylimino) methyl] phenol. Journal of Molecular Structure, 1088, 14–27. https://doi.org/10.1016/j.molstruc.2015.02.001
  • Zhu, X., Wang, C., Dang, Y., Zhou, H., Wu, Z., Liu, Z., Ye, D., & Zhou, Q. (2000). The Schiff base N-salicylidene-O, S-dimethylthiophosphorylimine and its metal complexes: Synthesis, characterization and insecticidal activity studies. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry, 30(4), 625–636. https://doi.org/10.1080/00945710009351787
  • Ziegler, T. (1991). Density functional theory as a practical tool for the study of elementary reaction steps in organometallic chemistry. Pure and Applied Chemistry, 63(6), 873–878. https://doi.org/10.1351/pac199163060873

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.