278
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

A foundational theoreticalAl12E12(E = N, P) adsorption and quinolone docking study: cage–quinolone pairs, optics and possible therapeutic and diagnostic applications

, , , , &
Pages 3630-3646 | Received 16 Apr 2021, Accepted 09 Mar 2022, Published online: 05 Apr 2022

References

  • Abd–Alla, H. I., Shaaban, M., Shaaban, K. A., Abu–Gabal, N. S., Shalaby, N. M. M., & Laatsch, H. (2009). New bioactive compounds from Aloe hijazensis. Natural Product Research, 23(11), 1035–1049.
  • Aghaei, M., Ramezanitaghartapeh, M., Javan, M., Hoseininezhad-Namin, M. S., Mirzaei, H., Rad, A. S., Soltani, A., Sedighi, S., Lup, A. N. K., Khori, V., Mahon, P., & Heidari, F. (2021). Investigations of adsorption behavior and anti-inflammatory activity of glycine functionalized Al12N12 and Al12ON11 fullerene-like cages. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 246, 119023. https://doi.org/10.1016/j.saa.2020.119023
  • Alexander, P. E., Debono, V. B., Mammen, M. J., Iorio, A., Aryal, K., Deng, D., & Alhazzani, W. J. (2020). COVID-19 coronavirus research has overall low methodological quality thus far: case in point for chloroquine/hydroxychloroquine. Journal of Clinical Epidemiology, 123, 120–126.
  • Al–Otaibi, J. S. (2020). Detailed quantum mechanical studies on bioactive benzodiazepine derivatives and their adsorption over graphene sheets. Spectrochimica Acta A, 235, 118333. https://doi.org/10.1016/j.saa.2020.118333
  • Al–Otaibi, J. S., Almuqrin, A. H., Mary, Y. S., & Mary, Y. S. (2020a). Comprehensive quantum mechanical studies on three bioactive anastrozole based triazole analogues and their SERS active graphene complex. Journal of Molecular Structure, 1217, 128388. https://doi.org/10.1016/j.molstruc.2020.128388
  • Al–Otaibi, J. S., Mary, Y. S., Armakovic, S., & Thomas, R. (2020b). Hybrid and bioactive cocrystals of pyrazinamide with hydroxybenzoic acids: Detailed study of structure, spectroscopic characteristics, other potential applications and noncovalent interactions using SAPT. Journal of Molecular Structure, 1202, 127316. https://doi.org/10.1016/j.molstruc.2019.127316
  • Al–Otaibi, J. S., Mary, Y. S., Mary, Y. S., Kaya, S., Serdaroglu, G. (2021a). DFT computational study of trihalogenated aniline derivative’s adsorption onto graphene/fullerene/fullerene–like nanocages, X12Y12 (X = Al, B, and Y = N, P). Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1016/j.molstruc.2020.128601
  • Al–Otaibi, J. S., Mary, Y. S., Mary, Y. S., & Serdaroglu, G. (2021b). Adsorption of adipic acid in Al/BN/P nanocages: DFT investigations. Journal of Molecular Modelling, 27(4), 1–7.
  • Angajala, G., Aruna, V., & Subashini, R. (2020). An efficient nano–copper catalyzed base–free Knoevenagel condensation: A facile synthesis, molecular modeling simulations, SAR and hypoglycemic studies of new quinoline tethered analogues as PPARy agonists, Journal of Molecular Structure, 1220, 128601.
  • Arslan, B. S., Arkan, B., Gezgin, M., Derin, Y., Avcı, D., Tutar, A., Nebioğlu, M., & Şişman, İ. (2021). The improvement of photovoltaic performance of quinoline–based dye–sensitized solar cells by modification of the auxiliary acceptors. Journal of Photochemistry and Photobiology, A: Chemistry, 404, 112936. https://doi.org/10.1016/j.jphotochem.2020.112936
  • Azarakhshi, F., Shahab, S., Kaviani, S., & Sheikhi, M. (2021). Investigation of adsorption of sulfanilamide drug on surfaces of the B12N12 and Al12N12 fullerenes: A DFT study. Letters in Organic Chemistry, 18, 640––6559.
  • Bader, R. F. W. (1990). Atoms in molecules: a quantum theory. Oxford University Press.
  • Baei, M. T., Lemeski, E. T., & Soltani. (2017). A DFT study of the adsorption of H2O2 inside and outside Al12N12nano––cage Russian. The Journal of Physical Chemistry A, 91, 1527–1534.
  • Bandoli, G., Dolmella, A., Tisato, F., Porchia, M., & Refosco, F. (2009). Mononuclear six coordinated Ga(III) complexes, a comprehensive survey. Coordination Chemistry Reviews, 253(1–2), 56–77. https://doi.org/10.1016/j.ccr.2007.12.001
  • Beheshtian, J., Peyghan, A. A., & Bagheri, Z. (2012). Quantum chemical study of fluorinated AlN nano–cage. Applied Surface Science, 259, 631–636.
  • Chang, L., Zhang, Y., Gan, L., Xu, H., Yan, N., Liu, R., & Rittmann, B. (2014). Internal loop photo–biodegradation reactor used for accelerated quinoline degradation and mineralization. Biodegradation, 25(4), 587–594. https://doi.org/10.1007/s10532-014-9683-4
  • Chen, Y.-L., Fang, K.-C., Sheu, J.-Y., Hsu, S.-L., & Tzeng, C.-C. (2001). Synthesis and antibacterial evaluation of certain quinoline derivatives. Journal of Medicinal Chemistry, 44(14), 2374–2377.
  • Chen, R., Mintseris, J., Janin, J., & Weng, Z. J. (2003). A protein-protein docking benchmark. Proteins. Structure, Function, & Bioinformatics, 52(1), 88–91. https://doi.org/10.1002/prot.10390
  • Connolly, M. L. (1983). Analytical molecular surface calculation. Journal of Applied Crystallography, 16(5), 548–558. https://doi.org/10.1107/S0021889883010985
  • da Silva, R. R., Ramalho, T. C., Santos, J. M., & Figueroa–Villar, J. D. A. (2006). On the limits of highest-occupied molecular orbital driven reactions: the frontier effective-for-reaction molecular orbital concept. The Journal of Physical Chemistry. A, 110(3), 1031–1040. https://doi.org/10.1021/jp054434y
  • de Erausquin, G. A., Snyder, H., Carrillo, M., Hosseini, A. A., Brugha, T. S., & Seshadri, S. (2021). The chronic neuropsychiatric sequelae of COVID–19: The need for a prospective study of viral impact on brain functioning the CNS SARS–CoV–2 Consortium. Alzheimer's Dementia, 17, 1056–1065.
  • de Lima, W. E. A., Pereira, A. F., de Castro, A. A., da Cunha, E. F F., & Ramalho, T. C. (2016). Flexibility in the molecular design of acetylcholinesterase reactivators: probing representative conformations by chemometric techniques and docking/QM calculations. Letters in Drug Design & Disovery, 13(5), 360–371.
  • Dennington, R., Keith, T. A., & Millam, J. M. (2016). GaussView, Version 6.1. Semichem Inc.
  • Dos Santos, G. C., Oliveira, E. F., Lavarda, F. C., & da Silva–Filho, L. C. (2019). Designing new quinoline–based organic photosensitizers for dye–sensitized solar cells (DSSC): a theoretical investigation. Journal of Molecular Modeling, 25(3), 75–87.
  • D'Souza, V. T., Nayak, J., D'Mello, D. E., & Dayananda, P. (2021). Synthesis and characterization of biologically important quinoline incorporated triazole derivatives. Journal of Molecular Structure, 1229, 129503. https://doi.org/10.1016/j.molstruc.2020.129503
  • Duhovny, D., Nussinov, R., & Wolfson, H. J. (2000). Efficient unbound docking of rigid molecules. In Gusfield, et al. (Eds.), Proceedings of the second workshop on algorithms in bioinformatics (WABI). Lecture Notes in Computer Science (vol. 2452, 185–200). Springer Verlag.
  • Edmont, D., Rocher, R., Plisson, C., & Chenault, J. (2000). Synthesis and evaluation of quinoline carboxyguanidines as antidiabetic agents. Bioorganic & Medicinal Chemistry Letters, 10(16), 1831–1834.
  • For the structure of 6VW1, kindly see reference, Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature 22, 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • For the structure of 6VYO kindly see reference, Chang, C., Michalska, K., Jedrzejczak, R., Maltseva, N., Endres, M., Godzik, A., Kim, Y., & Joachimiak, A. (2020). Crystal structure of RNA binding domain of nucleocapsid phosphoprotein from SARS coronavirus 2, RCSB PDB. https://doi.org/10.2210/pdb6vyo/pdb.
  • For the structure of 6WKQ kindly see reference, Rosas-lemus, M., Minasov, G., Shuvalova, L., Inniss, N. L., Kiryukhina, O., Brunzelle, J., & Satchell, K. J. F. (2020). High resolution structures of the SARS-CoV-2 2’-O-methyltransferase reveal strategies for structure based inhibitor design. Science Signaling, 13(651), eabe1202. https://doi.org/10.1126/scisignal.abe1202.
  • For the structure of 7AD1 kindly see reference, Juraszek, J., Rutten L., Blokland, S., Bouchier, P., Voorzaat, R., Ritschel, T., Bakkers, M. J. G., Renault, L. L. R., & Langedijk, J. P. M. (2021). Stabilizing the closed SARS-CoV-2 spike trimer. Nature Communications, 12, 244. https://doi.org/10.1038/s41467-020-20321-x.
  • For the structure of 7AOL kindly see reference, Guenther, S., Reinke, P., & Oberthuer, D. (2021). X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science 372, 642–646. https://doi.org/10.1126/science.abf7945.
  • For the structure of 7B3C kindly see reference, Kokic, G., Hillen, H. S., Tegunov, D., Dienemann, C., Seitz, F., Schmitzova, J., Farnung, L., Siewert, A., Hobartner, C., & Cramer, P. (2021). Mechanism of SARS-CoV-2 polymerase stalling by remdesivir, Nature Communications, 12, 279. https://doi.org/10.1038/s41467-020-20542-0. https://doi.org/10.1093/bib/bbaa378
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2016). Gaussian 16, Revision A.03. Gaussian, Inc.
  • Fu, J., Yao, K., Chang, Y., Li, B., Yang, L., & Xu, K. (2019). A novel colorimetric-fluorescent probe for Al3+ and the resultant complex for F- and its applications in cell imaging. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 222, 117234. https://doi.org/10.1016/j.saa.2019.117234
  • Ghosh, S., Pal, S., Praveena, K. S. S., & Mareddy, J. (2020). 2–Chloro–7–methyl–3–((4–((p–tolyloxy)methyl)–1H–1,2,3–triazol–1–yl)methyl)quinoline: Crystal structure, hydrogen bonding and anti–bacterial activity. Journal of Molecular Structure, 1212, 128137. https://doi.org/10.1016/j.molstruc.2020.128137
  • Guo, F., Li, S. C., Wang, L., & Zhu, D. (2012). Protein-protein binding site identification by enumerating the configurations, BMC Bioinformatics 13, 158. http://www.biomedcentral.com/1471-2105/13/158.
  • Guo, X., Li, Y. L., Liu, Y. F., Guo, H. Y., & Wang, Y. C. (2010). Synthesis and in vitro antibacterial activities of 7–(3–aminopyrrolo[3,4–c]pyrazol–5–(2H,4H,6H)–yl)quinolone derivatives. Chinese Chemical Letters, 21(10), 1141–1144. https://doi.org/10.1016/j.cclet.2010.06.011
  • Gupta, A., Kumar, S., Kumar, R., Choudhary, A. K., Kumari, K., Singh, P., & Kumar, V. J. C. (2020). COVID‐19: Emergence of infectious diseases, nanotechnology aspects, challenges, and future perspectives. ChemistrySelect, 5(25), 7521.
  • Ha, Y., Murale, D. P., Yun, C., Manjare, S. T., Kim, H., Kwak, J., Lee, Y. S., & Churchill, D. G., (2015). H+–assisted fluorescent differentiation of Cu+ and Cu2+: effect of Al3+–induced acidity on chemical sensing and generation of two novel and independent logic gating pathways, Chemical Communications, 51, 6357–6360. DOI10.1039/c4cc10025e. https://doi.org/10.1039/c4cc10025e
  • Ha, Y., Tsay O. G., & Churchill, D. G. (2011). A tutorial and mini–review of the ICP–MS technique for determinations of transition metal ion and main group element concentration in the neurodegenerative and brain sciences, Monatshefte Für Chemie, 142, 385–398. https://doi.org/10.1007/s00706-010-0438-6
  • Http. (2021). https://www.cnbc.com/2021/10/01/merck––to––seek––emergency––authorization––for––oral––covid––19––treatment.html#:∼:text=Merck%20has%20already%20begun%20producing%20molnupiravir.%20The%20pharmaceutical,use%20authorization%20or%20full%20approval%20from%20the%20FDA.
  • Jampilek, J., Musiol, R., Finster, J., Pesko, M., Carroll, J., Kralova, K., Vejsova, M., O'Mahony, J., Coffey, A., Dohnal, J., & Polanski, J. (2009). Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules (Basel, Switzerland), 14(10), 4246–4265. https://doi.org/10.3390/molecules14104246
  • Khan, S., Asiri, A., Al-Thaqafy, S., Faidallah, H., & El-Daly, S. (2014). Synthesis, characterization and spectroscopic behavior of novel 2-oxo-1,4-disubstituted-1,2,5,6-tetrahydrobenzo[h]quinoline-3-carbonitrile dyes. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 133, 141–148. https://doi.org/10.1016/j.saa.2014.05.013
  • Kim, A., Lee, H., Yun, D., Jung, U., Kim, K.-T., & Kim, C. (2020). Developing a new chemosensor targeting zinc ion based on two types of quinoline platforms. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 241, 118652. https://doi.org/10.1016/j.saa.2020.118652
  • Kipnis, J., Derecki, N. C., Yang, C., & Scrable, H. (2008). Immunity and cognition: what do age–related dementia, HIV–dementia and 'chemo–brain' have in common? Trends in Immunology, 29, 455–463. https://doi.org/10.1016/j.it.2008.07.007
  • Krishnakumar, V., & Ramasamy, R. (2005). DFT studies and vibrational spectra of isoquinoline and 8-hydroxyquinoline. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 61(4), 673–683.
  • Kumar, D., Kumari, K., Vishvakarma, V. K., Jayaraj, A., Kumar, D., & Ramappa, V. K. (2020). Promising inhibitors of main protease of novel corona virus to prevent the spread of COVID–19 using docking and molecular dynamics simulation. J Biomol Struct Dyn., 39(13), 4671-4685. doi:10.1080/07391102.2020.1779131
  • La Porta, F. A., Ramalho, T. C., Santiago, R. T., Rocha, M. V., & da Cunha, E. F F. (2011). Orbital signatures as a descriptor of regioselectivity and chemical reactivity: the role of the frontier orbitals on 1, 3–dipolar cycloadditions. The Journal of Physical Chemistry A, 115(5), 824–833. https://doi.org/10.1021/jp108790w
  • Lakshi, A., Balachandran, V., & Janaki, A. (2011). Comparative vibrational spectroscopic studies, HOMO–LUMO and NBO analysis of 5,7–dibromo–8–hydroxyquinoline and 5,7–dichloro–8–hydroxyquinoline based on density functional method. Journal of Molecular Structure, 1004, 51–66. https://doi.org/10.1016/j.saa.2004.05.030
  • Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK–NMR: programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR 8(4), 477–486.
  • Liu, H., Tan, Y., Dai, Q., Liang, H., Song, J., Qu, J., & Wong, W. –Y. (2018). A simple amide fluorescent sensor based on quinoline for selective and sensitive recognition of zinc (II) ions and bioimaging in living cells. Dyes Pigments, 158, 312–318. https://doi.org/10.1016/j.dyepig.2018.05.026
  • Liu, S. M., Wei, P. R., Wang, Y. Z., Santillan–Jimenez, E., Bakus, R. C., & Atwood, D. A. (2005). Use of a structurally characterized molecular cluster to form Yb3Al5O12 under ambient conditions. Main Group Chemistry, 4, 3–10. https://doi.org/10.1080/10241220500046059
  • Lu, T., & Chen, F. (2012). Multiwfn: a multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Mahboobeh, K., & Elham, T. L. (2020). B12Y12 (Y:N,P) fullerene like cages for exemestane delivery; molecular modeling investigation. Journal of Molecular Structure, 128455.
  • Mary, Y. S., & Mary, Y. S. (2021). Utilization of doped/undoped graphene quantum dots for ultrasensitive detection of duphaston, a SERS platform. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 244, 118865.
  • Mary, Y. S., Mary, Y. S., Kratky, M., Vinsova, J., Baraldi, C., & Gamberini, M. C. (2021). DFT, molecular docking and SERS (concentration and solvent dependant) investigations of a methylisoxazole derivative with potential antimicrobial activity. Journal of Molecular Structure, 1232, 130034. https://doi.org/10.1016/j.molstruc.2021.130034
  • Mary, Y. S., Mary, Y. S., Resmi, K. S., & Thomas, R. (2019). DFT and molecular docking investigations of oxicam derivatives. Heliyon, 5(7), e02175. https://doi.org/10.1016/j.heliyon.2019.e02175
  • Mary, Y. S., Panicker,C. Y., Sapnakumari, M., Narayana, B., Sarojini, B. K., Al–Saadi, A. A., Van Alsenoy, C., War, J. A., & Fun H. K. (2015). Molecular structure, FT–IR, Vibrational assignments, HOMO–LUMO analysis and molecular docking study of 1–[5–(4–Bromophenyl)–3–(4–fluorophenyl)–4,5–dihydro–1H–pyrazol–1–yl]ethanone. Spectrochimica Acta 136, 473–482. https://doi.org/10.1016/j.saa.2014.09.060
  • Michael, J. P. (2008). Quinoline, quinazoline and acridone alkaloids. Natural Product Reports, 25(1), 166–187.
  • Minville, J., Poulin, J., Dufresne, C., & Sturino, C. (2008). A general synthesis of quinolinones and benzothiazine 1,1–dioxides via ring closing metathesis. Tetrahedron Letters, 49(22), 3677–3681. https://doi.org/10.1016/j.tetlet.2008.03.144
  • Mishra, C. B., Pandey, P., Sharma, R. D., Malik, M. Z., Mongre, R. K., Lynn, A. M., Prasad, R., Jeon, R., & Prakasha, A. (2021) Identifying the natural polyphenol catchin as a multi–targeted agent against SARS–CoV–2 for the plausible therapy of COVID–19: an integrated computational approach. Briefings in Bioinformatics, 2, 1–15.
  • Mulon, J.-B., Destandau, E., Alain, V., Bardez, E. (2005). How can aluminium(III) generate fluorescence? Journal of Inorganic Biochemistry, 99(9), 1749–1755.
  • Mushtaque, M. J. (2015). Reemergence of chloroquine (CQ) analogs as multi–targeting antimalarial agents: a review. European Journal of Medicinal Chemistry, 90, 280–295. https://doi.org/10.1016/j.ejmech.2014.11.022
  • Musiol, R., Jampilek, J., Kralova, K., Richardson, D., Kalinowski, D., Podeszwa, B., Finster, J., Niedbala, H., Palka, A., & Polanski, J. (2007). Investigating biological activity spectrum for novel quinoline analogues. Bioorganic & Medicinal Chemistry, 15(3), 1280–1288. https://doi.org/10.1016/j.bmc.2006.11.020
  • Nayyar, A., Malde, A., Coutinho, E., & Jain, R. (2006). Synthesis, anti–tuberculosis activity and 3D–QSAR study of ring–substituted–2/4–quinoline carbaldehyde derivatives. Bioorganic & Medicinal Chemistry, 14(21), 7302–7310. https://doi.org/10.1016/j.bmc.2006.06.049
  • Nicolai, A., Sumpter, B. G., & Meunier, V. (2014). Tunable water desalination across graphene oxide framework membranes. Physical Chemistry Chemical Physics: PCCP, 16(18), 8646–8654. https://doi.org/10.1039/c4cp01051e
  • O'Boyle, N., Tenderholt, A., & Langner, K. (2008). CCLIB: a library for package-independent computational chemistry algorithms. Journal of Computational Chemistry, 29(5), 839–845. https://doi.org/10.1002/jcc.20823
  • Padash, R., Rahimi–Nasrabadi, M., Rad, A. S., Sobhani–Nasab, A., Jesionowski, T., and Ehrlich, H. (2019). A comparative computational investigation of phosgene adsorption on (XY) 12(X = Al, B and Y = N,P) nanoclusters: DFT investigations. Journal of Cluster Science, 30(1), 203–218.
  • Padash, R., Sobhani–Nasab, A., Rahimi–Nasrabadi, M., Mirmotahari, M., Ehrlich, H., Rad, A. S., & Peyravi, M. (2018). Is it possible to use X12Y12 (X = Al, B and Y = N,P) nanocages for drug delivery systems? A DFT study of the adsorption property of 4–aminopyridine drug. Applied Physics A, 124(9), 582. https://doi.org/10.1007/s00339-018-1965-y
  • Pape, K., Tamouza, R., Leboyer, M., & Zipp, F. (2019). Immunoneuropsychiatry — novel perspectives on brain disorders. Nature Reviews Neurology, 15, 317.
  • Politzer, P., & Murray, J. S. (1991). Protein (vol. 2), Adenine PressChapter 13.
  • Prajapati, S. M., Patel, K. D., Vekariya, R. H., Panchal, S. N., & Patel, H. D. (2014). Recent advances in the synthesis of quinolines: a review. RSC Advances, 4, 24463–24476.
  • Rad, A. S., & Ayub, K. (2017), Adsorption of thiophene on the surfaces of X12Y12 (X = Al, B, and Y = N,P) nanoclusters; A DFT study, Journal of Molecular Liquids, 238, 303–309. https://doi.org/10.1016/j.jclinepi.2020.04.016
  • Rad, A. S., & Ayub, K. J. (2016). A comparative density functional theory study of guanine chemisorption on Al12N12, Al12P12, B. 12N12, and B12P12nano–cages. Journal of Alloys and Compounds, 672, 161–169.
  • Rad, A. S., Aghaei, S. M., Pazoki, H., Binaeian, E., & Mirzaei, M. (2018). Surface interaction of H2O and H2S onto Ca12O12 nanocluster: Quantum‐chemical analyses. Surface and Interface Analysis, 50(4), 411–419. https://doi.org/10.1002/sia.6382
  • Rad, A. S., Samipour, V., Movaghgharnezhad, S., Mirabi, A., Shahavi, M. H., & Moghadas, B. K. (2019). X12N12 (X = Al, B) clusters for protection of vitamin C; molecular modeling investigation. Surfaces and Interfaces, 15, 30–37. https://doi.org/10.1016/j.surfin.2019.02.001
  • Rad, A. S., Zareyee, D., Foukolaei, V. P., Moghadas B. K., & Peyravi, M. (2016). Study on the electronic structure of Al12N12and Al12P12fullerene––like nano––clusters upon adsorption of CH3F and CH3Cl. Molecular Physics,114(21), 3143–3149. https://doi.org/10.1080/00268976.2016.1220646
  • Rao, P. S., Kurumurthy, C., Veeraswamy, B., Kumar, G. S., Rao, P. S., Pamanji, R., Rao, J. V., & Narsaiah, B. (2013). Synthesis of novel 2-alkyl triazole-3-alkyl substituted quinoline derivatives and their cytotoxic activity. Bioorganic & Medicinal Chemistry Letters, 23(5), 1225–1227. https://doi.org/10.1016/j.bmcl.2013.01.021
  • Roohi, H., A.–R, N., & Anjomshoa, E. (2011). H–bonded complexes of uracil with parent nitrosamine: a quantum chemical study. Computational and Theoretical Chemistry, 965(1), 211–220. https://doi.org/10.1016/j.comptc.2011.01.048
  • Ryoo, N., Pyun, J. M., Baek, M. J., Suh J., Kang, M. J., Wang, M. J., Youn, Y. C., Yang, D. W., Kim, S. Y., Park, Y. H., & Kim S. (2020) Coping with dementia in the middle of the COVID–19 pandemic. Journal of Korean Medical Science, 35(42), e383. https://doi.org/10.3346/jkms.2020.35.e383
  • Saleh, G., Gatti, C., Lo Presti L. (2012). Non–covalent interaction via the reduced density gradient: independent atom model vs experimental multipolar electron densities. Computational and Theoretical Chemistry, 998, 148–163.
  • Schneidman–Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). Patchdock and Symmdock: servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–W367. https://doi.org/10.1093/nar/gki481
  • Scott, L. E., & Orvig, C. (2009). Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease. Chemical Reviews, 109(10), 4885–4910.
  • Shaker, R. A., Abboud, S. H., Assad, H. C., & Hadi, N. (2018). Enoxaparin attenuates doxorubicin induced cardiotoxicity in rats via interfering with oxidative stress, inflammation and apoptosis. BMC Pharmacology & ToxicologyToxicology, 19(1), 1–10.
  • Sharma, V., Som, N. N., Pillai, S. B., & Jha, P. K. (2020). Utilization of doped GQDs for ultrasensitive detection of catastrophic melamine: A new SERS platform. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 224, 117352. https://doi.org/10.1016/j.saa.2019.117352
  • Sheeja, S. R., Mangalam, N. A., Kurup, M. R. P., Mary, Y. S., Raju, K., Varghese, H. T., & Panicker, C. Y. (2010). Vibrational spectroscopic studies and computational study of quinoline–2–carbaldehyde benzoyl hydrazone. Journal of Molecular Structure, 973(1–3), 36–46. https://doi.org/10.1016/j.molstruc.2010.03.016
  • Sureshkumar, B., Mary, Y. S., Panicker, C. Y., Suma, S., Armaković, S., Armaković, S., Van Alsenoy, C., & Narayana, B. (2020). Quinoline derivatives as possible lead compounds for anti–malarial drugs: Spectroscopic, DFT and MD study. Arabian Journal of Chemistry, 13(1), 632–648. https://doi.org/10.1016/j.arabjc.2017.07.006
  • Sureshkumar, B., Mary, Y., Resmi, K. S., Suma, S., Armaković, S., Armaković, S., Van Alsenoy, C., Narayana, B., & Sobhana, D. (2018). Spectroscopic characterization of hydroxyquinoline derivatives with bromine and iodine atoms and theoretical investigation by DFT calculations, MD simulations and molecular docking studies. Journal of Molecular Structure, 1167, 95–106. https://doi.org/10.1016/j.molstruc.2018.04.077
  • Yadav, R., Chaudhary, J. K., Jain, N., Chaudhary, P. K., Khanra, S., Dhamija, P., Sharma, A., Kumar, A., Handu, A., & Handu, S. J. C. (2021). Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 10(4), 821. https://doi.org/10.3390/cells10040821
  • Yamamoto, V., Bolanos, J. F., Fiallos, J., Strand, S. E., Morris, K., Shahrokhinia, S., Cushing, T. R., Hopp, L., Tiwari, A., Hariri, R., Sokolov, R., Wheeler, C., Kaushik, A., Elsayegh, A., Eliashiv, D., Hedrick, R., Jafari, B., Johnson, J. P., Khorsandi, M., Gonzalez, N., Balakhani, G., Lahiri, S., Ghavidel, K., Amaya, M., Kloor, H., Hussain, N., Huang, E., Cormier, J., Wesson, A. J., Wang, J. C., Yaghobian, S., Khorrami, P., Shamloo, B., Moon, C., Shadi, P., & Kateb, B. (2020). COVID––19: Review of a 21st Century Pandemic From Etiology To Neuro––psychiatric implications. Journal of Alzheimers Disease, 77(2), 459–504. https://doi.org/10.3233/JAD––200831
  • Zhang, C., Vasmatzis, G., Cornette, J. L., & DeLisi, C. (1997). Determination of atomic desolvation energies from the structures of crystallized proteins. Journal of Molecular Biology, 267(3), 707–726.
  • Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functional for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states and transition elements: two new functional and systematic testing of our M06–class functional and 12 other functional. Theoretical Chemistry Accounts, 120(1–3), 215–241. https://doi.org/10.1007/s00214-007-0310-x
  • Zhu, H., Ma, W., Han, H., Han, Y., & Ma, W. (2017). Catalytic ozonation of quinoline using nano–MgO: Efficacy, pathways, mechanisms and its application to real biologically pretreated coal gasification wastewater. Chemical Engineering Journal, 327, 91–99. https://doi.org/10.1016/j.cej.2017.06.025
  • Zupan, A., Burke, K., Ernzerhof, M., & Perdew, J. P. (1997a). Distributions and averages of electron density parameters: explaining the effects of gradient corrections. Journal of Chemical Physics, 106, 10184–10193 https://doi.org/10.1016/j.comptc.2012.07.014
  • Zupan, A., Perdew, J. P., Burke, K., & Causà, M. (1997b). Density–gradient analysis for density functional theory: application to atoms. International Journal of Quantum Chemistry, 61, 835–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.