713
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Computational investigation of aphid odorant receptor structure and binding function

ORCID Icon, ORCID Icon, , &
Pages 3647-3658 | Received 12 Nov 2021, Accepted 09 Mar 2022, Published online: 30 Mar 2022

References

  • Adams, M., Celniker, S., Holt, R., Evans, C., Gocyane, J., Amanatides, P., Scherer, S., Li, P., & Hoskins, R. (2000). The genome sequence of drosophila melanogaster. Science (80.), 287, 2185–2195. https://doi.org/10.1126/science.287.5461.2185
  • Batra, S., Corcoran, J., Zhang, D. D., Pal, P., Umesh, K. P., Kulkarni, R., Löfstedt, C., Sowdhamini, R., & Olsson, S. B. (2019). A functional agonist of insect olfactory receptors: behavior, physiology and structure. Frontiers in Cellular Neuroscience, 13, 134–113. https://doi.org/10.3389/fncel.2019.00134
  • Benton, R. (2006). On the ORigin of smell: Odorant receptors in insects. Cellular and Molecular Life Sciences : CMLS, 63(14), 1579–1585. https://doi.org/10.1007/s00018-006-6130-7
  • Benton, R., Dessimoz, C., & Moi, D. (2020). A putative origin of insect chemosensory receptors in the last common eukaryotic ancestor. Elife, 0041. 2020.08.24.264408.
  • Bohbot, J. D., & Pitts, R. J. (2015). The narrowing olfactory landscape of insect odorant receptors. Frontiers in Ecology and Evolution, 3(APR), 1–10. https://doi.org/10.3389/fevo.2015.00039
  • Bowers, W. S., Nault, L. R., Webb, R. E., & Dutky, S. R. (1972). Aphid Alarm Pheromone : Isolation, Identification, synthesis. Science (New York, N.Y.), 177(4054), 1121–1122. https://doi.org/10.1126/science.177.4054.1121
  • Bruno, D., Grossi, G., Salvia, R., Scala, A., Farina, D., Grimaldi, A., Zhou, J. J., Bufo, S. A., Vogel, H., Grosse-Wilde, E., Hansson, B. S., & Falabella, P. (2018). Sensilla morphology and complex expression pattern of odorant binding proteins in the vetch aphid megoura viciae (Hemiptera: Aphididae). Frontiers in Physiology, 9, 777–719. https://doi.org/10.3389/fphys.2018.00777
  • Brylinski, M. (2018). Aromatic Interactions at the ligand-protein interface: Implications for the development of docking scoring functions. Chemical Biology & Drug Design, 91(2), 380–390. https://doi.org/10.1111/cbdd.13084
  • Butterwick, J. A., del Mármol, J., Kim, K. H., Kahlson, M. A., Rogow, J. A., Walz, T., & Ruta, V. (2018). Cryo-EM structure of the insect olfactory receptor orco. Nature, 560(7719), 447–452. https://doi.org/10.1038/s41586-018-0420-8
  • Caballero-Vidal, G., Bouysset, C., Gévar, J., Mbouzid, H., Nara, C., Delaroche, J., Golebiowski, J., Montagné, N., Fiorucci, S., & Jacquin-Joly, E. (2021). Reverse chemical ecology in a moth: Machine learning on odorant receptors identifies new behaviorally active agonists. Cellular and Molecular Life Sciences, 78(19–20), 6593–6603. https://doi.org/10.1007/s00018-021-03919-2
  • Caballero-Vidal, G., Bouysset, C., Grunig, H., Fiorucci, S., Montagné, N., Golebiowski, J., & Jacquin-Joly, E. (2020). Machine learning decodes chemical features to identify novel agonists of a moth odorant receptor. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-58564-9
  • Chen, V. B., Arendall, W. B., Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallographica. Section D, Biological Crystallography, 66(Pt 1), 12–21. https://doi.org/10.1107/S0907444909042073
  • Corcoran, J. A., Sonntag, Y., Andersson, M. N., Johanson, U., & Löfstedt, C. (2018). Endogenous insensitivity to the orco agonist VUAA1 reveals novel olfactory receptor complex properties in the specialist fly mayetiola destructor. Sci. Rep, 8(1), 1–13. https://doi.org/10.1038/s41598-018-21631-3
  • Dawson, G. W., Griffiths, D. C., Janes, N. F., Mudd, A., Pickett, J. A., Wadhams, L. J., & Woodcock, C. (1987). Identification of an aphid sex pheromone. Nature, 325(6105), 614–616. https://doi.org/10.1038/325614a0
  • De Biasio, F., Riviello, L., Bruno, D., Grimaldi, A., Congiu, T., Sun, Y. F., & Falabella, P. (2014). Expression pattern analysis of odorant-binding proteins in the pea aphid Acyrthosiphon pisum. Insect Science, 22, 220–234. https://doi.org/10.1111/1744-7917.12118
  • del Mármol, J., Yedlin, M. A., & Ruta, V. (2021). The structural basis of odorant recognition in insect olfactory receptors. Nature, 597(7874), 126–131. https://doi.org/10.1038/s41586-021-03794-8
  • Douglas, A. E. (2006). Phloem-sap feeding by animals: problems and solutions. Journal of Experimental Botany, 57(4), 747–754. https://doi.org/10.1093/jxb/erj067
  • Du, S., Yang, Z., Qin, Y., Wang, S., Duan, H., & Yang, X. (2018). Computational investigation of the molecular conformation-dependent binding mode of (E) - β -Farnesene analogs with a heterocycle to aphid odorant-binding proteins. Journal of Molecular Modelling, 24(3), 7.
  • Edwards, L. J., Siddall, J. B., Dunham, L. L., Uden, P., & Kislow, C. (1973). Trans-β-Farnesene, alarm pheromone of the green peach aphid, Myzus persicae (Sulzer). Nature, 241(5385), 126–127. https://doi.org/10.1038/246421a0
  • FigTree. (n.d.). http://tree.bio.ed.ac.uk/software/figtree/.
  • GeneDoc. (n.d.). https://genedoc.software.informer.com/2.7/.
  • Gonzales, W. L., Ramirez, C. C., Olea, N., & Niemeyer, H. M. (2002). Host plant changes produced by the Aphid Sipha Flava: Consequences for aphid feeding behaviour and growth. Entomologia Experimentalis et Applicata, 103(2), 107–113. https://doi.org/10.1046/j.1570-7458.2002.00964.x
  • Harris, K. F., & Maramorosch, K. (1977). Aphids as virus vectors (1st ed.). Academic.
  • Heringa, J. (1999). Two strategies for sequence comparison: profile-preprocessed and secondary structure-induced multiple alignment. Computers & Chemistry, 23(3–4), 341–364.
  • Hofmann, K., & Stoffel, W. (1993). TMbase - A database of membrane spanning proteins segments. Biol. Chem.
  • Hopf, T. A., Morinaga, S., Ihara, S., Touhara, K., Marks, D. S., & Benton, R. (2015). Amino acid coevolution reveals three-dimensional structure and functional domains of insect odorant receptors. Nature Communications, 6, 1–7. https://doi.org/10.1038/ncomms7077
  • Hou, X., Zhang, D. D., Yuvaraj, J. K., Corcoran, J. A., Andersson, M. N., & Löfstedt, C. (2020). Functional characterization of odorant receptors from the moth eriocrania semipurpurella: A comparison of results in the xenopus oocyte and HEK cell systems. Insect Biochemistry and Molecular Biology, 117, 103289. https://doi.org/10.1016/j.ibmb.2019.103289
  • Hughes, D. T., Wang, G., Zwiebel, L. J., & Luetje, C. W. (2014). A determinant of odorant specificity is located at the extracellular loop 2-transmembrane domain 4 interface of an anopheles gambiae odorant receptor subunit. Chemical Senses, 39(9), 761–769. https://doi.org/10.1093/chemse/bju048
  • Jin, X., Ha, T. S., & Smith, D. P. (2008). SNMP Is a signaling component required for pheromone sensitivity in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10996–11001. https://doi.org/10.1073/pnas.0803309105
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Käll, L., Krogh, A., & Sonnhammer, E. L. L. (2004). A combined transmembrane topology and signal peptide prediction method. Journal of Molecular Biology, 338(5), 1027–1036.
  • Krogh, A., Larsson, G., von Heijne, G., & Sonnhammer, E. L. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567–580.
  • Kythreoti, G., Sdralia, N., Tsitoura, P., Papachristos, D. P., Michaelakis, A., Karras, V., Ruel, D. M., Yakir, E., Bohbot, J. D., Schulz, S., & Iatrou, K. (2021). Volatile allosteric antagonists of mosquito odorant receptors inhibit human-host attraction. The Journal of Biological Chemistry, 296, 100172. https://doi.org/10.1074/jbc.RA120.016557
  • Larter, N. K., Sun, J. S., & Carlson, J. R. (2016). Organization and function of Drosophila odorant binding proteins. eLife, 5, e20242. https://doi.org/10.7554/eLife.20242
  • Leary, G. P., Allen, J. E., Bunger, P. L., Luginbill, J. B., Linn, C. E., Macallister, I. E., Kavanaugh, M. P., & Wanner, K. W. (2012). Single mutation to a sex pheromone receptor provides adaptive specificity between closely related moth species. Proceedings of the National Academy of Sciences of the United States of America, 109(35), 14081–14086. https://doi.org/10.1073/pnas.1204661109
  • Luetje, C. W., Nichols, A. S., Castro, A., & Sherman, B. (2013). functional assay of mammalian and insect olfactory receptors using Xenopus oocytes. Olfactory receptors, 1003, 187–202.
  • Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N., Basutkar, P., Tivey, A. R. N., Potter, S. C., Finn, R. D., & Lopez, R. (2019). The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Research, 47(W1), W636–W641. https://doi.org/10.1093/nar/gkz268
  • Nguyen, N. T., Nguyen, T. H., Pham, T. N. H., Huy, N. T., Bay, M., Van; Pham, M. Q., Nam, P. C., Vu, V. V., & Ngo, S. T. (2020). Autodock vina adopts more accurate binding poses but Autodock4 forms better binding affinity. Journal of Chemical Information and Modeling, 60(1), 204–211. https://doi.org/10.1021/acs.jcim.9b00778
  • Nibouche, S., Mississipi, S., Fartek, B., Delatte, H., Reynaud, B., & Costet, L. (2015). Host plant specialization in the sugarcane Aphid Melanaphis Sacchari. PLoS One, 10(11), e0143704–13. https://doi.org/10.1371/journal.pone.0143704
  • Nichols, A. S., & Luetje, C. W. (2010). Transmembrane segment 3 of drosophila melanogaster odorant receptor subunit 85b contributes to ligand-receptor interactions. The Journal of Biological Chemistry, 285(16), 11854–11862. https://doi.org/10.1074/jbc.M109.058321
  • Northey, T., Venthur, H., De Biasio, F., Chauviac, F. X., Cole, A., Ribeiro, K. A. L., Grossi, G., Falabella, P., Field, L. M., Keep, N. H., & Zhou, J. J. (2016). Crystal structures and binding dynamics of odorant-binding protein 3 from two aphid species Megoura viciae and Nasonovia ribisnigri. Scientific Reports, 6, 24739–24713.https://doi.org/10.1038/srep24739.
  • Pandit, S. B., Zhang, Y., & Skolnick, J. (2006). TASSER-lite: An automated tool for protein comparative modeling. Biophysical Journal, 91(11), 4180–4190. https://doi.org/10.1529/biophysj.106.084293
  • Pellegrino, M., Steinbach, N., Stensmyr, M. C., Hansson, B. S., & Vosshall, L. B. (2011). A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature, 478(7370), 511–514. https://doi.org/10.1038/nature10438
  • Pelosi, P., Zhou, J. J., Ban, L. P., & Calvello, M. (2006). Soluble proteins in insect chemical communication. Cellular and Molecular Life Sciences : CMLS, 63(14), 1658–1676. https://doi.org/10.1007/s00018-005-5607-0
  • Peter Tieleman. (n.d.). Biocomputing Group.
  • Pickett, J. A., Allemann, R. K., & Birkett, M. A. (2013). The semiochemistry of Aphids. Natural Product Reports, 30(10), 1277–1283. https://doi.org/10.1039/c3np70036d
  • Pickett, J. A., & Griffiths, D. C. (1980). Composition of aphid alarm pheromones. Journal of Chemical Ecology, 6(2), 349–360. https://doi.org/10.1007/BF01402913
  • Pirovano, W., Feenstra, K. A., & Heringa, J. (2008). PRALINE™: A strategy for improved multiple alignment of transmembrane proteins. Bioinformatics (Oxford, England), 24(4), 492–497. https://doi.org/10.1093/bioinformatics/btm636
  • Qiao, H., Tuccori, E., He, X., Gazzano, A., Field, L., Zhou, J. J., & Pelosi, P. (2009). Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins . Insect Biochemistry and Molecular Biology, 39(5-6), 414–419. https://doi.org/10.1016/j.ibmb.2009.03.004
  • Radadiya, A., & Pickett, J. A. (2020). Characterizing human odorant signals: insights from insect semiochemistry and in silico modelling. Philosophical Transactions of the Royal Society B, 375, 1800. https://doi.org/10.1098/rstb.2019.0263
  • Ray, A., van Naters, o., & Carlson, J. R. (2014). Molecular determinants of odorant receptor function in insects. Journal of Biosciences, 39(4), 555–563. https://doi.org/10.1007/s12038-014-9447-7
  • Ritchie, D. W., & Grudinin, S. (2016). Spherical polar Fourier assembly of protein complexes with arbitrary point group symmetry. Journal of Applied Crystallography, 49(1), 158–167. https://doi.org/10.1107/S1600576715022931
  • Salmaso, V., & Moro, S. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Frontiers in Pharmacology, 9(AUG), 923–916. https://doi.org/10.3389/fphar.2018.00923
  • Sargsyan, V., Getahun, M. N., Llanos, S. L., Olsson, S. B., Hansson, B. S., & Wicher, D. (2011). Phosphorylation via PKC regulates the function of the drosophila odorant co-receptor. Frontiers in Cellular Neuroscience, 5, 5–8. https://doi.org/10.3389/fncel.2011.00005
  • German, P. F., van der Poel, S., Carraher, C., Kralicek, A. V., & Newcomb, R. D. (2013). Insights into subunit interactions within the insect olfactory receptor complex using FRET. Insect Biochemistry and Molecular Biology, 43(2), 138–145. https://doi.org/10.1016/j.ibmb.2012.11.002
  • Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L. B., & Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature, 452(7190), 1002–1006. https://doi.org/10.1038/nature06850
  • Schrödinger, L. (2015). The PyMOL molecular graphics system.
  • Sun, Y. F., de Biasio, F., Qiao, H. L., Iovinella, I., Yang, S. X., Ling, Y., Riviello, L., Battaglia, D., Falabella, P., Yang, X. L., & Pelosi, P. (2012). Two odorant-binding proteins mediate the behavioural response of aphids to the alarm pheromone (e)-ß-farnesene and structural analogues. PLoS One, 7(3), e32759–10. https://doi.org/10.1371/journal.pone.0032759
  • Syed, Z., Ishida, Y., Taylor, K., Kimbrell, a., & Leal, W. S. (2006). Pheromone reception in fruit flies expressing a moth's odorant receptor. Proceedings of the National Academy of Sciences of the United States of America, 103(44), 16538–16543. https://doi.org/10.1073/pnas.0607874103
  • Syed, Z., Kopp, A., Kimbrell, a., & Leal, W. S. (2010). Bombykol receptors in the silkworm moth and the fruit fly. Proceedings of the National Academy of Sciences of the United States of America, 107(20), 9436–9439. https://doi.org/10.1073/pnas.1003881107
  • Trible, W., Olivos-Cisneros, L., McKenzie, S. K., Saragosti, J., Chang, N. C., Matthews, B. J., Oxley, P. R., & Kronauer, D. J. C. (2017). Orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell, 170(4), 727–735.e10. https://doi.org/10.1016/j.cell.2017.07.001
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.
  • Tsitoura, P., & Iatrou, K. (2016). Positive allosteric modulation of insect olfactory receptor function by ORco agonists. Frontiers in Cellular Neuroscience, 10, 275–213. (DEC2016), . https://doi.org/10.3389/fncel.2016.00275
  • Turner, R. M., Derryberry, S. L., Kumar, B. N., Brittain, T., Zwiebel, L. J., Newcomb, R. D., & Christie, D. L. (2014). Mutational analysis of cysteine residues of the insect odorant co-receptor (Orco) from drosophila melanogaster reveals differential effects on agonist- and odorant-tuning receptor-dependent activation. The Journal of Biological Chemistry, 289(46), 31837–31845. https://doi.org/10.1074/jbc.M114.603993
  • Tusnády, G. E., & Simon, I. (2001). Simon, I. The HMMTOP transmembrane topology prediction server. Bioinformatics (Oxford, England), 17(9), 849–850. https://doi.org/10.1093/bioinformatics/17.9.849
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Van Emden, H. F., & Harrington, R. (2007). Aphids as crop pests. https://doi.org/10.1079/9780851998190.0115. ISBN 9780851998190.
  • Venthur, H., Mutis, A., Zhou, J. J., & Quiroz, A. (2014). Ligand binding and homology modelling of insect odorant-binding proteins. Physiological Entomology, 39(3), 183–198. https://doi.org/10.1111/phen.12066
  • Webb, B., & Sali, A. (2017). Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma, 54(5.6), 1–37. https://doi.org/10.1002/cpbi.3.
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science : a Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Xu, P., & Leal, W. S. (2013). Probing insect odorant receptors with their cognate ligands: insights into structural features. Biochemical and Biophysical Research Communications, 435(3), 477–482. https://doi.org/10.1016/j.bbrc.2013.05.015
  • Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1496–1503. https://doi.org/10.1073/pnas.1914677117
  • Yang, K., Huang, L. Q., Ning, C., & Wang, C. Z. (2017). Two single-point mutations shift the ligand selectivity of a pheromone receptor between two closely related moth species. eLife, 6, 1–21. https://doi.org/10.7554/eLife.29100
  • Yuvaraj, J., Roberts, R., Sonntag, Y., Hou, X.-Q., Grosse-Wilde, E., Machara, A., Zhang, D.-D., Hansson, B., Johanson, U., Löfstedt, C., & Andersson, M. (2021). Putative ligand binding sites of two functionally characterized bark beetle odorant receptors. BMC Biology, 19(1), 16. https://doi.org/10.1101/2020.03.07.980797.
  • Zhang, B., Liu, Y., Yan, S. C., & Wang, G. R. (2019). Identification and functional characterization of an odorant receptor in Pea aphid, Acyrthosiphon pisum. Insect Science, 26(1), 58–67. https://doi.org/10.1111/1744-7917.12510
  • Zhang, R., Wang, B., Grossi, G., Falabella, P., Liu, Y., Yan, S., Lu, J., Xi, J., & Wang, G. (2017). Molecular basis of alarm pheromone detection in aphids. Current Biology : CB, 27(1), 55–61. https://doi.org/10.1016/j.cub.2016.10.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.