166
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Screening of indole derivatives as the potent anticancer agents on dihydrofolate reductase: pharmaco-informatics and molecular dynamics simulation

& ORCID Icon
Pages 3667-3679 | Received 22 Sep 2021, Accepted 09 Mar 2022, Published online: 23 Mar 2022

References

  • Algul, O., Paulsen, J. L., & Anderson, A. C. (2011). 2,4-Diamino-5-(2'-arylpropargyl)pyrimidine derivatives as new nonclassical antifolates for human dihydrofolate reductase inhibition . Journal of Molecular Graphics & Modelling, 29(5), 608–613. https://doi.org/10.1016/j.jmgm.2010.11.004
  • Andersen, H. C. (1980). Molecular dynamics simulations at constant pressure and/or temperature. The Journal of Chemical Physics, 72(4), 2384–2393. https://doi.org/10.1063/1.439486
  • Charlton, P. A., Young, D. W., Birdsall, B., Feeney, J., & Roberts, G. C. (1979). Stereochemistry of reduction of folic acid using dihydrofolate reductase. Journal of the Chemical Society, Chemical Communications, (20), 922–924. https://doi.org/10.1039/c39790000922
  • Charlton, P. A., Young, D. W., Birdsall, B., Feeney, J., & Roberts, G. C. (1985). Stereochemistry of reduction of the vitamin folic acid by dihydrofolate reductase. Journal of the Chemical Society, Perkin Transactions, 1, 1349–1353. https://doi.org/10.1039/p19850001349
  • Cody, V., Pace, J., Makin, J., Piraino, J., Queener, S. F., & Rosowsky, A. (2009). Correlations of inhibitor kinetics for Pneumocystis jirovecii and human dihydrofolate reductase with structural data for human active site mutant enzyme complexes. Biochemistry, 48(8), 1702–1711. https://doi.org/10.1021/bi801960h
  • Cuthbertson, C. R., Arabzada, Z., Bankhead, A., III, Kyani, A., & Neamati, N. (2021). A review of small-molecule inhibitors of one-carbon enzymes: SHMT2 and MTHFD2 in the spotlight. ACS Pharmacology & Translational Science, 4(2), 624–646. https://doi.org/10.1021/acsptsci.0c00223
  • Dileep, K., Remya, C., Tintu, I., & Sadasivan, C. (2014). Interactions of selected indole derivatives with COX-2 and their in silico structure modifications towards the development of novel NSAIDs. Journal of Biomolecular Structure & Dynamics, 32(11), 1855–1863.
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. https://doi.org/10.1002/jcc.10349
  • El-Subbagh, H. I., &Sabry, M. A. (2021). 2-Substituted-mercapto-quinazolin-4(3H)-ones as DHFR Inhibitors. Mini Reviews in Medicinal Chemistry, 21(16), 2249–2260. https://doi.org/10.2174/1389557521666210304105736 33663366
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fatemi, S. M., Baniasadi, A., & Moradi, M. (2017). Recent progress in molecular simulation of nanoporous graphene membranes for gas separation. Journal of the Korean Physical Society, 71(1), 54–62. https://doi.org/10.3938/jkps.71.54
  • Feeney, J., Birdsall, B., Kovalevskaya, N. V., Smurnyy, Y. D., Navarro Peran, E. M., & Polshakov, V. I. (2011). NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions. Biochemistry, 50(18), 3609–3620. https://doi.org/10.1021/bi200067t
  • Feig, M., Karanicolas, J., & Brooks, C. L. III (2004). MMTSB tool set: enhanced sampling and multiscale modeling methods for applications in structural biology. Journal of Molecular Graphics & Modelling, 22(5), 377–395. https://doi.org/10.1016/j.jmgm.2003.12.005
  • Fischer, C. F. (1987). General hartree-fock program. Computer Physics Communications, 43(3), 355–365.
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Montgomery, J., Jr, Vreven, T., Kudin, K., & Burant, J. (2004). Gaussian 03, revision c. 02. Gaussian. Inc.
  • Froimowitz, M. (1993). HyperChem: A software package for computational chemistry and molecular modeling. BioTechniques, 14(6), 1010–1013.
  • Gasteiger, J., & Marsili, M. (1980). Iterative partial equalization of orbital electronegativity—A rapid access to atomic charges. Tetrahedron, 36(22), 3219–3228. https://doi.org/10.1016/0040-4020(80)80168-2
  • Giletti, A., & Esperon, P. (2018). Genetic markers in methotrexate treatments. The Pharmacogenomics Journal, 18(6), 689–703. https://doi.org/10.1038/s41397-018-0047-z
  • Gilson, M. K., & Honig, B. (1988). Calculation of the total electrostatic energy of a macromolecular system: solvation energies, binding energies, and conformational analysis. Proteins, 4(1), 7–18. https://doi.org/10.1002/prot.340040104
  • Goldman, I. D., Chattopadhyay, S., Zhao, R., & Moran, R. (2010). The antifolates: Evolution, new agents in the clinic, and how targeting delivery via specific membrane transporters is driving the development of a next generation of folate analogs. Current Opinion in Investigational Drugs (London, England: 2000), 11(12), 1409–1423.
  • Hayward, S., Kitao, A., & Go, N. (1995). Harmonicity and anharmonicity in protein dynamics: A normal mode analysis and principal component analysis. Proteins, 23(2), 177–186. https://doi.org/10.1002/prot.340230207
  • Heaslet, H., Harris, M., Fahnoe, K., Sarver, R., Putz, H., Chang, J., Subramanyam, C., Barreiro, G., & Miller, J. R. (2009). Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim. Proteins, 76(3), 706–717. https://doi.org/10.1002/prot.22383
  • Honig, B., & Nicholls, A. (1995). Classical electrostatics in biology and chemistry. Science (New York, N.Y.), 268(5214), 1144–1149. https://doi.org/10.1126/science.7761829
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kaur, J., Kaur, S., & Singh, P. (2016). Rational modification of the lead molecule: Enhancement in the anticancer and dihydrofolate reductase inhibitory activity. Bioorganic & Medicinal Chemistry Letters, 26(8), 1936–1940. https://doi.org/10.1016/j.bmcl.2016.03.015
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kremer, J. M., Alarcón, G. S., Lightfoot, R. W., Willkens, R. F., Furst, D. E., Williams, H. J., Dent, P. B., & Weinblatt, M. E. (1994). Methotrexate for rheumatoid arthritis. Suggested guidelines for monitoring liver toxicity. American College of RheumatologyArthritis and Rheumatism, 37(3), 316–328. https://doi.org/10.1002/art.1780370304
  • Maddah, M., Bahramsoltani, R., Yekta, N. H., Rahimi, R., Aliabadi, R., & Pourfath, M. (2021). Proposing high-affinity inhibitors from Glycyrrhiza glabra L. against SARS-CoV-2 infection: virtual screening and computational analysis. New Journal of Chemistry, 45(35), 15977–15995. https://doi.org/10.1039/D1NJ02031E
  • Maddah, M., Maddah, M., & Peyvandi, K. (2021). Investigation on structural properties of winter flounder antifreeze protein in interaction with clathrate hydrate by molecular dynamics simulation. The Journal of Chemical Thermodynamics, 152, 106267. https://doi.org/10.1016/j.jct.2020.106267
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Naeemy, A.,Ehsani, A.,Jafarian, M., &Moradi, M. (2015). Physioelectrochemical Investigation of Electrocatalytic Oxidation of Saccharose on Conductive Polymer Modified Graphite Electrode. Journal of Electrochemical Science and Technology, 6(3), 88–94. https://doi.org/10.5229/JECST.2015.6.3.88
  • Naeini, V. F., Foroutan, M., Maddah, M., Rémond, Y., & Baniassadi, M. (2018). Determinative factors in inhibition of aquaporin by different pharmaceuticals: Atomic scale overview by molecular dynamics simulation. Biochimica et Biophysica Acta. General Subjects, 1862(12), 2815–2823. https://doi.org/10.1016/j.bbagen.2018.09.002
  • Norgan, A. P., Coffman, P. K., Kocher, J.-P., Katzmann, D. J., & Sosa, C. P. (2011). Multilevel parallelization of AutoDock 4.2. Journal of Cheminformatics, 3(1), 12. https://doi.org/10.1186/1758-2946-3-12
  • Oefner, C., D'ARCY, A., & WINKLER, F. K. (1988). Crystal structure of human dihydrofolate reductase complexed with folate. European Journal of Biochemistry, 174(2), 377–385. https://doi.org/10.1111/j.1432-1033.1988.tb14108.x
  • Pearlman, D. A., Case, D. A., Caldwell, J. W., Ross, W. S., Cheatham, T. E., III, DeBolt, S., Ferguson, D., Seibel, G., & Kollman, P. (1995). AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Computer Physics Communications, 91(1–3), 1–41. https://doi.org/10.1016/0010-4655(95)00041-D
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Raimondi, M. V., Randazzo, O., Franca, L., Barone, G., Vignoni, E., Rossi, D., & Collina, S. (2019). DHFR inhibitors: reading the past for discovering novel anticancer agents. Molecules, 24(6), 1140. https://doi.org/10.3390/molecules24061140
  • Rana, R. M., Rampogu, S., Zeb, A., Son, M., Park, C., Lee, G., Yoon, S., Baek, A., Parameswaran, S., Park, S. J., & Lee, K. W. (2019). In silico study probes potential inhibitors of human dihydrofolate reductase for cancer therapeutics. Journal of Clinical Medicine, 8(2), 233. https://doi.org/10.3390/jcm8020233
  • Rao, A., & Tapale, S. (2013). A study on dihydrofolate reductase and its inhibitors: A review. International Journal of Pharmaceutical Sciences and Research, 4(7), 2535.
  • Roe, D. R., & Cheatham, T. E. III (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sahin, K. (2021). Investigation of novel indole-based HIV-1 protease inhibitors using virtual screening and text mining. Journal of Biomolecular Structure & Dynamics, 39(10), 3638–3648. https://doi.org/10.1080/07391102.2020.1775121
  • Singh, G.,Soni, H.,Tandon, S.,Kumar, V.,Babu, G.,Gupta, V., &Chaudhuri (Chattopadhyay), P. (2022). Identification of natural DHFR inhibitors in MRSA strains: Structure-based drug design study. Results in Chemistry, 4, 100292https://doi.org/10.1016/j.rechem.2022.100292
  • Singh, P. (2014). Structural optimization of indole based compounds for highly promising anti-cancer activities: Structure activity relationship studies and identification of lead molecules. European Journal of Medicinal Chemistry, 74, 440–450.
  • Singh, P., Kaur, M., & Holzer, W. (2010). Synthesis and evaluation of indole, pyrazole, chromone and pyrimidine based conjugates for tumor growth inhibitory activities-development of highly efficacious cytotoxic agents. European Journal of Medicinal Chemistry, 45(11), 4968–4982. https://doi.org/10.1016/j.ejmech.2010.08.004
  • Singh, P., Kaur, M., & Sachdeva, S. (2012). Mechanism inspired development of rationally designed dihydrofolate reductase inhibitors as anticancer agents. Journal of Medicinal Chemistry, 55(14), 6381–6390. https://doi.org/10.1021/jm300644g
  • Singh, P., Kaur, M., & Verma, P. (2009). Design, synthesis and anticancer activities of hybrids of indole and barbituric acids-identification of highly promising leads. Bioorganic & Medicinal Chemistry Letters, 19(11), 3054–3058. https://doi.org/10.1016/j.bmcl.2009.04.014
  • Sitkoff, D., Sharp, K. A., & Honig, B. (1994). Accurate calculation of hydration free energies using macroscopic solvent models. The Journal of Physical Chemistry, 98(7), 1978–1988. https://doi.org/10.1021/j100058a043
  • Taira, K., & Benkovic, S. J. (1988). Evaluation of the importance of hydrophobic interactions in drug binding to dihydrofolate reductase. Journal of Medicinal Chemistry, 31(1), 129–137. https://doi.org/10.1021/jm00396a019
  • Takimoto, C. H. (1997). Antifolates in clinical development. Seminars in Oncology 24, 40–51.
  • Tosso, R. D., Andujar, S. A., Gutierrez, L., Angelina, E., Rodriguez, R., Nogueras, M., Baldoni, H., Suvire, F. D., Cobo, J., & Enriz, R. D. (2013). Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration. Journal of Chemical Information and Modeling, 53(8), 2018–2032.
  • Tsui, V., & Case, D. A. (2000). Theory and applications of the generalized Born solvation model in macromolecular simulations. Biopolymers, 56(4), 275–291. https://doi.org/10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Weiner, S. J., Kollman, P. A., Case, D. A., Singh, U. C., Ghio, C., Alagona, G., Profeta, S., & Weiner, P. (1984). A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, 106(3), 765–784. https://doi.org/10.1021/ja00315a051
  • Wróbel, A., Arciszewska, K., Maliszewski, D., & Drozdowska, D. (2020). Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. The Journal of Antibiotics, 73(1), 5–27. https://doi.org/10.1038/s41429-019-0240-6
  • Wróbel, A., & Drozdowska, D. (2021). Recent design and structure-activity relationship studies on the modifications of DHFR inhibitors as anticancer agents. Current Medicinal Chemistry, 28(5), 910–927. https://doi.org/10.2174/0929867326666191016151018
  • Zarei, M., Rahbar, M. R., & Negahdaripour, M. (2020). Interaction of indole-3-acetic acid with horseradish peroxidase as a potential anticancer agent: from docking to molecular dynamics simulation. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1854118
  • Zeng, H., Cai, Y., Jiang, H., & Zhu, C. (2021). Two C(sp3)-F bond activation in a CF3 group: ipso-defluorinative amination triggered 1,3-diamination of (trifluoromethyl)alkenes with indoles, carbazoles, pyrroles, and sulfonamides . Organic Letters, 23(1), 66–70. https://doi.org/10.1021/acs.orglett.0c03708
  • Zhang, Q., Nguyen, T., McMichael, M., Velu, S. E., Zou, J., Zhou, X., & Wu, H. (2015). New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans. International Journal of Antimicrobial Agents, 46(2), 174–182. https://doi.org/10.1016/j.ijantimicag.2015.03.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.