92
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Elucidating the binding mechanism of an antimigraine agent with a model protein: insights from molecular spectroscopic, calorimetric and computational approaches

&
Pages 3686-3701 | Received 23 Jan 2022, Accepted 09 Mar 2022, Published online: 24 Mar 2022

References

  • Abdullah, S. M. S., Fatma, S., Rabbani, G., & Ashraf, J. M. (2017). A spectroscopic and molecular docking approach on the binding of tinzaparin sodium with human serum albumin. Journal of Molecular Structure, 1127, 283–288. https://doi.org/10.1016/j.molstruc.2016.07.108
  • Ahmad, E., Rabbani, G., Zaidi, N., Singh, S., Rehan, M., Khan, M. M., Rahman, S. K., Quadri, Z., Shadab, M., Ashraf, M. T., Subbarao, N., Bhat, R., & Khan, R. H. (2011). Stereo-selectivity of human serum albumin to enantiomeric and isoelectronic pollutants dissected by spectroscopy, calorimetry and bioinformatics. PLoS ONE, 6(11), e26186. https://doi.org/10.1371/journal.pone.0026186
  • Al, M. (2020). Spectroscopic and molecular docking studies for characterizing binding mechanism and conformational changes of human serum albumin upon interaction with Telmisartan. Saudi Pharmaceutical Journal, 28(6), 729–736. https://doi.org/10.1016/j.jsps.2020.04.015
  • Ali, M. S., Muthukumaran, J., & Al-Lohedan, H. A. (2020). Molecular interactions of ceftazidime with bovine serum albumin: Spectroscopic, molecular docking, and DFT analyses. Journal of Molecular Liquids, 313, 113490. https://doi.org/10.1016/j.molliq.2020.113490
  • Ali, M. S., Muthukumaran, J., Jain, M., Santos-Silva, T., Al-Lohedan, H. A., & Al-Shuail, N. S. (2021). Molecular interactions of cefoperazone with bovine serum albumin: Extensive experimental and computational investigations. Journal of Molecular Liquids, 337, 116354. https://doi.org/10.1016/j.molliq.2021.116354
  • Al-Shabib, N. A., Khan, J. M., Ali, M. S., Al-Lohedan, H. A., Khan, M. S., Al-Senaidy, A. M., Husain, F. M., & Shamsi, M. B. (2017). Exploring the mode of binding between food additive “butylated hydroxytoluene (BHT)” and human serum albumin: Spectroscopic as well as molecular docking study. Journal of Molecular Liquids, 230, 557–564. https://doi.org/10.1016/j.molliq.2017.01.066
  • Ameen, F., Siddiqui, S., Jahan, I., Nayeem, S. M., Rehman, S., Ur., & Tabish, M. (2020a). A detailed insight into the interaction of memantine with bovine serum albumin: A spectroscopic and computational approach. Journal of Molecular Liquids, 303, 112671. https://doi.org/10.1016/j.molliq.2020.112671
  • Anand, U., Jash, C., Kiran Boddepalli, R., Shrivastava, A., & Mukherjee, S. (2011). Exploring the mechanism of fluorescence quenching in proteins induced by tetracycline. The Journal of Physical Chemistry. B, 115(19), 6312–6320. https://doi.org/10.1021/jp2008978
  • Arakawa, T., & Maluf, N. K. (2018). The effects of allantoin, arginine and NaCl on thermal melting and aggregation of ribonuclease, bovine serum albumin and lysozyme. International Journal of Biological Macromolecules, 107(Pt B), 1692–1696. https://doi.org/10.1016/j.ijbiomac.2017.10.034
  • Bapli, A., Chatterjee, A., Gautam, R. K., Pandit, S., Jana, R., & Seth, D. (2021). Interaction of a hydrophilic molecule with bovine serum albumin: A combined multi-spectroscopic, microscopic and isothermal calorimetric study in the presence of graphene oxide. Journal of Molecular Liquids, 323, 114618. https://doi.org/10.1016/j.molliq.2020.114618
  • Berde, C. B., Hudson, B. S., Simoni, R. D., & Sklar, L. A. (1979). Human serum albumin. Spectroscopic studies of binding and proximity relationships for fatty acids and bilirubin. Journal of Biological Chemistry, 254(2), 391–400. https://doi.org/10.1016/S0021-9258(17)37930-9
  • Boobbyer, D. N. A., Goodford, P. J., Mcwhinnie, P. M., & Wade, R. C. (1989). New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure. Journal of Medicinal Chemistry, 32(5), 1083–1094. (https://doi.org/10.1021/jm00125a025
  • Breiten, B., R., Lockett, M., Sherman, W., Fujita, S., Al-Sayah, M., Lange, H., M., Bowers, C., Heroux, A., Krilov, G., M., & Whitesides, G. (2013). Water networks contribute to enthalpy/entropy compensation in protein-ligand binding. Journal of the American Chemical Society, 135(41), 15579–15584. https://doi.org/10.1021/ja4075776
  • Bunnell, P., & Mock, T. D. (1990). A guide for the preparation and use of overhead and slide visuals by “Buffers. A guide for the preparation and use of buffers in biological systems” Chandra Mohan, Calbiochem, 2006, 3rd Edition. EMD Bioscience.
  • Celej, M. S., Montich, G. G., & Fidelio, G. D. (2003). Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Science, 12(7), 1496–1506. https://doi.org/10.1110/ps.0240003
  • Cerón-Carrasco, J. P., Mozzarelli, A., Moro, S., & Salmaso, V. (2018). Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: an overview. Frontiers in Pharmacology, 9, 923. www.Frontiersin.Org, 1https://doi.org/10.3389/fphar.2018.00923
  • Chandel, T. I., Rabbani, G., Khan, M. V., Zaman, M., Alam, P., E., Shahein, Y., & Hasan Khan, R. (2018). Binding of anti-cardiovascular drug to serum albumin: An insight in the light of spectroscopic and computational approaches. Journal of Biomolecular Structure & Dynamics, 36(1), 54–67. https://doi.org/10.1080/07391102.2016.1266968
  • Chaturvedi, S. K., Ahmad, E., Khan, J. M., Alam, P., Ishtikhar, M., & Khan, R. H. (2015). Elucidating the interaction of limonene with bovine serum albumin: A multi-technique approach. Molecular bioSystems, 11(1), 307–316. https://doi.org/10.1039/c4mb00548a
  • Davis, J. L. (2018). Pharmacologic principles. Equine internal medicine: Fourth edition, 79–137. Elsevier. https://doi.org/10.1016/B978-0-323-44329-6.00002-4
  • Eton, & Lepore. (2008). 基因的改变NIH Public Access. Bone, 23(1), 1–7. https://doi.org/10.1016/j.pain.2008.06.002.Profound
  • Ferrari, M. D., & Saxena, P. R. S. (1992). Clinical effects and mechanism of action of sumatriptan in migraine. Clinical Neurology and Neurosurgery, 94(SUPPL), 73–77. https://doi.org/10.1016/0303-8467(92)90028-2
  • Főrster, T. (1965). Delocalized excitation and excitation transfer. United States Atomic Energy Commission, 2690(1(18)), 61.
  • Froehlich, E., Mandeville, J. S., Jennings, C. J., Sedaghat-Herati, R., & Tajmir-Riahi, H. A. (2009). Dendrimers bind human serum albumin. The Journal of Physical Chemistry. B, 113(19), 6986–6993. https://doi.org/10.1021/jp9011119
  • Gokara, M., Narayana, V. V., Sadarangani, V., Chowdhury, S. R., Varkala, S., Ramachary, D. B., & Subramanyam, R. (2017). Unravelling the binding mechanism and protein stability of human serum albumin while interacting with nefopam analogues: A biophysical and insilico approach. Journal of Biomolecular Structure & Dynamics, 35(10), 2280–2292. https://doi.org/10.1080/07391102.2016.1216895
  • Gonzalez, D., Schmidt, S., & Derendorf, H. (2013). Importance of relating efficacy measures to unbound drug concentrations for anti-infective agents. Clinical Microbiology Reviews, 26(2), 274–288. https://doi.org/10.1128/CMR.00092-12
  • Hackl, E., Darkwah, J., Smith, G., & Ermolina, I. (2018). Effect of arginine on the aggregation of protein in freeze-dried formulations containing sugars and polyol: II. BSA reconstitution and aggregation. AAPS PharmSciTech, 19(7), 2934–2947. https://doi.org/10.1208/s12249-018-1114-0
  • Hoque, M., Gupta, J., Rabbani, G., Khan, R. H., & Saleemuddin, M. (2016). Behaviour of oleic acid-depleted bovine alpha-lactalbumin made LEthal to tumor cells (BAMLET). Molecular bioSystems, 12(6), 1871–1880. https://doi.org/10.1039/c5mb00905g
  • Hornok, V., Juhász, Á., Paragi, G., Kovács, A. N., & Csapó, E. (2020). Thermodynamic and kinetic insights into the interaction of kynurenic acid with human serum albumin: Spectroscopic and calorimetric approaches. Journal of Molecular Liquids, 313, 112869. https://doi.org/10.1016/j.molliq.2020.112869
  • Hu, T., & Liu, Y. (2015). Probing the interaction of cefodizime with human serum albumin using multi-spectroscopic and molecular docking techniques. Journal of Pharmaceutical and Biomedical Analysis, 107, 325–332. https://doi.org/10.1016/j.jpba.2015.01.010
  • Ishtikhar, M., Rabbani, G., & Khan, R. H. (2014). Interaction of 5-fluoro-5’-deoxyuridine with human serum albumin under physiological and non-physiological condition: A biophysical investigation. Colloids and Surfaces. B, Biointerfaces, 123, 469–477.
  • Javaheri-Ghezeldizaj, F., Jafari, A., Mahmoudpour, M., Moghadaszadeh, M., Yekta, R., & Ezzati Nazhad Dolatabadi, J. (2021). Binding process evaluation of bovine serum albumin and Lawsonia inermis (henna) through spectroscopic and molecular docking approaches. Journal of Molecular Liquids, 331, 115792. https://doi.org/10.1016/j.molliq.2021.115792
  • Javaheri-Ghezeldizaj, F., Mahmoudpour, M., Yekta, R., & Ezzati Nazhad Dolatabadi, J. (2020). Albumin binding study to sodium lactate food additive using spectroscopic and molecular docking approaches. Journal of Molecular Liquids, 310, 113259. https://doi.org/10.1016/j.molliq.2020.113259
  • Khaibrakhmanova, D., Nikiforova, A., & Sedov, I. (2021). Binding constants of drug-albumin complexes from DSC measurements. Thermochimica Acta, 699, 178930. https://doi.org/10.1016/j.tca.2021.178930
  • Khan, J. M., Malik, A., Husain, F. M., & Alkaltham, M. S. (2022). Molecular interaction of Sunset Yellow with whey protein: Multi-spectroscopic techniques and computational study. Journal of Molecular Liquids, 345, 117838. https://doi.org/10.1016/j.molliq.2021.117838
  • Kou, S. B., Lin, Z. Y., Wang, B. L., Shi, J. H., & Liu, Y. X. (2021). Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. Journal of Molecular Structure, 1224, 129024.
  • Lakowicz, J. R. (1999a). Protein fluorescence. Principles of Fluorescence Spectroscopy, 445–486. https://doi.org/10.1007/978-1-4757-3061-6_16
  • Lakowicz, J. R. (1999b). Quenching of fluorescence. Principles of Fluorescence Spectroscopy, 237–265. https://doi.org/10.1007/978-1-4757-3061-6_8
  • Lakowicz, J. R. (2006). Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics (Norwell, Mass.), 1(1), 5–33. https://doi.org/10.1007/s11468-005-9002-3
  • Lalah, J. O., & Wandiga, S. O. (2006). Extinction coefficients and dissolved organic carbon content in freshwater in Kenya. Bulletin of Environmental Contamination and Toxicology, 77(4), 533–542. https://doi.org/10.1007/s00128-006-1097-5
  • Liao, T., Zhang, Y., Huang, X., Jiang, Z., & Tuo, X. (2021). Multi-spectroscopic and molecular docking studies of human serum albumin interactions with sulfametoxydiazine and sulfamonomethoxine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 246, 119000. https://doi.org/10.1016/j.saa.2020.119000
  • Li, S., Peng, Z., & Leblanc, R. M. (2015a). Method to determine protein concentration in the protein-nanoparticle conjugates aqueous solution using circular dichroism spectroscopy. Analytical Chemistry, 87(13), 6455–6459. https://doi.org/10.1021/acs.analchem.5b01451
  • Liu, J., He, Y., Liu, D., He, Y., Tang, Z., Lou, H., Huo, Y., & Cao, X. (2018). Characterizing the binding interaction of astilbin with bovine serum albumin: A spectroscopic study in combination with molecular docking technology. RSC Advances, 8(13), 7280–7286. https://doi.org/10.1039/C7RA13272G
  • Li, Y., Wang, Y., Wang, A., Lu, S., Zhou, L., Zhou, J., Lin, Y., & Wei, S. (2015b). Spectroscopic study on the interaction of bovine serum albumin with zinc(II) phthalocyanine. Luminescence: The Journal of Biological and Chemical Luminescence, 30(8), 1367–1374. https://doi.org/10.1002/bio.2908
  • Makarska-Bialokoz, M., & Lipke, A. (2019). Study of the binding interactions between uric acid and bovine serum albumin using multiple spectroscopic techniques. Journal of Molecular Liquids, 276, 595–604. https://doi.org/10.1016/j.molliq.2018.12.026
  • Millar, D. P. (1996). Time-resolved fluorescence spectroscopy. Current Opinion in Structural Biology, 6(5), 637–642. https://doi.org/10.1016/S0959-440X(96)80030-3
  • Mocz, G., & Ross, J. A. (2013). Fluorescence techniques in analysis of protein-ligand interactions. Methods in Molecular Biology (Clifton, N.J.), 1008, 169–210.https://doi.org/10.1007/978-1-62703-398-5_7
  • Molina-Bolívar, J. A., Galisteo-González, F., Carnero Ruiz, C., Medina, O’Donnell, M., & Parra, A. (2015). Interaction between the anti-cancer drug diacetyl maslinic acid and bovine serum albumin: A biophysical study. Journal of Molecular Liquids, 208, 304–313. https://doi.org/10.1016/j.molliq.2015.04.050
  • Mollarasouli, F., Dogan-Topal, B., Caglayan, M. G., Taskin-Tok, T., & Ozkan, S. A. (2020). Electrochemical, spectroscopic, and molecular docking studies of the interaction between the anti-retroviral drug indinavir and dsDNA. Journal of Pharmaceutical Analysis, 10(5), 473–481. https://doi.org/10.1016/j.jpha.2020.08.004
  • Paul, B. K., Ghosh, N., & Mukherjee, S. (2015). Interplay of multiple interaction forces: Binding of norfloxacin to human serum albumin. The Journal of Physical Chemistry B, 119(41), 13093–13102. https://doi.org/10.1021/acs.jpcb.5b08147
  • Paul, S., Sepay, N., Sarkar, S., Roy, P., Dasgupta, S., Saha Sardar, P., & Majhi, A. (2017). Interaction of serum albumins with fluorescent ligand 4-azido coumarin: Spectroscopic analysis and molecular docking studies. New Journal of Chemistry, 41(24), 15392–15404. https://doi.org/10.1039/C7NJ02335A
  • pone.0017230 1.15 _ Enhanced Reader.pdf. (n.d.).
  • pone.0038372 1.13 _ Enhanced Reader.pdf. (n.d.).
  • Precupas, A., Sandu, R., Neculae, A. V. F., Neacsu, A., & Popa, V. T. (2021). Calorimetric, spectroscopic and computational investigation of morin binding effect on bovine serum albumin stability. Journal of Molecular Liquids, 333, 115953. https://doi.org/10.1016/j.molliq.2021.115953
  • Precupas, A., Sandu, R., T., & Popa, V. (2016). Quercetin influence on thermal denaturation of bovine serum albumin. The Journal of Physical Chemistry B, 120(35), 9362–9375. https://doi.org/10.1021/acs.jpcb.6b06214
  • Rabbani, G., Ahmad, E., Khan, M. V., Ashraf, M. T., Bhat, R., & Khan, R. H. (2015). Impact of structural stability of cold adapted Candida antarctica lipase B (CaLB): In relation to pH, chemical and thermal denaturation. RSC Advances, 5(26), 20115–20131. https://doi.org/10.1039/C4RA17093H
  • Rabbani, G., Ahmad, E., Zaidi, N., Fatima, S., & Khan, R. H. (2012). pH-induced molten globule state of rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochemistry and Biophysics, 62, 487–499. https://doi.org/10.1007/s12013-011-9335-9
  • Rabbani, G., Ahmad, E., Zaidi, N., & Khan, R. H. (2011). pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white. Cell Biochemistry and Biophysics, 61, 551–560. https://doi.org/10.1007/s12013-011-9237-x
  • Rabbani, G., & Ahn, S. N. (2019). Structure, enzymatic activities, glycation and therapeutic potential of human serum albumin: A natural cargo. International Journal of Biological Macromolecules, 123, 979–990. https://doi.org/10.1016/j.ijbiomac.2018.11.053
  • Rabbani, G., Baig, M. H., Jan, A. T., Ju Lee, E., Khan, M. V., Zaman, M., Farouk, A. E. A., Khan, R. H., & Choi, I. (2017a). Binding of erucic acid with human serum albumin using a spectroscopic and molecular docking study. International Journal of Biological Macromolecules, 105(Pt 3), 1572–1580. https://doi.org/10.1016/j.ijbiomac.2017.04.051
  • Rabbani, G., Hassan Baig, M., Ju Lee, E., Cho, W.-K., Yeul Ma, J., & Choi, I. (2017b). Biophysical study on the interaction between eperisone hydrochloride and human serum albumin using spectroscopic, calorimetric, and molecular docking analyses. Molecular Pharmaceutics, 14(5), 1656–1665. https://doi.org/10.1021/acs.molpharmaceut.6b01124
  • Rabbani, G., Ju Lee, E., Ahmad, K., Hassan Baig, M., & Choi, I. (2018). Binding of tolperisone hydrochloride with human serum albumin: Effects on the conformation, thermodynamics, and activity of HSA. Molecular Pharmaceutics, 15(4), 1445–1456. https://doi.org/10.1021/acs.molpharmaceut.7b00976
  • Rabbani, G., Kaur, J., Ahmad, E., Hasan Khan, R., & Jain, S. K. (2014). Structural characteristics of thermostable immunogenic outer membrane protein from salmonella enterica serovar typhi. Applied Microbiology and Biotechnology, 98, 2533–2543. https://doi.org/10.1007/s00253-013-5123-3
  • Rabbani, G., Khan, M. J., Ahmad, A., Maskat, M. Y., & Khan, R. H. (2014). Effect of copper oxide nanoparticles on the conformation and activity of β-galactosidase. Colloids and Surfaces B: Biointerfaces, 123, 96–105. https://doi.org/10.1016/j.colsurfb.2014.08.035
  • Raeessi-Babaheydari, E., Farhadian, S., & Shareghi, B. (2021). Evaluation of interaction between citrus flavonoid, naringenin, and pepsin using spectroscopic analysis and docking simulation. Journal of Molecular Liquids, 339, 116763. https://doi.org/10.1016/j.molliq.2021.116763
  • Rajendiran, N., & Thulasidhasan, J. (2015). Spectral, electrochemical and molecular docking methods to get an understanding of supramolecular chemistry of sulfa drugs to biomolecules. Journal of Molecular Liquids, 212, 857–864. https://doi.org/10.1016/j.molliq.2015.10.036
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102. https://doi.org/10.1021/bi00514a017
  • Roy, S., Nandi, R. K., Ganai, S., Majumdar, K. C., & Das, T. K. (2017). Binding interaction of phosphorus heterocycles with bovine serum albumin: A biochemical study. Journal of Pharmaceutical Analysis, 7(1), 19–26. https://doi.org/10.1016/j.jpha.2016.05.009
  • Sanchez-Ruiz, J. M. (1992). Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophysical Journal, 61(4), 921–935. https://doi.org/10.1016/S0006-3495(92)81899-4
  • Schmid, F., & Beer, L. (2001). Biological macromolecules: Spectrophotometry concentrations. Methods, 1–4. Macmillan Publishers Ltd, Nature Publishing Group.
  • Sengupta, P., Sardar, P. S., Roy, P., Dasgupta, S., & Bose, A. (2018). Investigation on the interaction of Rutin with serum albumins: Insights from spectroscopic and molecular docking techniques. Journal of Photochemistry and Photobiology B, Biology, 183, 101–110. https://doi.org/10.1016/j.jphotobiol.2018.04.019
  • Shahani, M., Maghvan, P. V., Tadayon, R., Rostami, A., Suprun, E. V., Shumyantseva, V. V., Archakov, A. I., Quantification, E., Chakraborty, S. K., Hsieh, S. R., Reddy, P. M., Chang, C. J., Kumar, A., Wu, W. C., Lin, H. Y., Al-amarat, W., Abukhalil, M. H., Althunibat, O. Y., Alfwuaires, M. A., … Nabok, A. (2020). Spectroscopic and molecular docking studies for characterizing binding mechanism and conformational changes of human serum albumin upon interaction with Telmisartan. Molecules, 8(6), 13. https://doi.org/10.3390/CHEMOSENSORS8020028
  • Siddiqui, S., Ameen, F., ur Rehman, S., Sarwar, T., & Tabish, M. (2021). Studying the interaction of drug/ligand with serum albumin. Journal of Molecular Liquids, 336, 116200. https://doi.org/10.1016/j.molliq.2021.116200
  • Sohrabi, T., Hosseinzadeh, M., Beigoli, S., Saberi, M. R., & Chamani, J. (2018). Probing the binding of lomefloxacin to a calf thymus DNA-histone H1 complex by multi-spectroscopic and molecular modeling techniques. Journal of Molecular Liquids, 256, 127–138. https://doi.org/10.1016/j.molliq.2018.02.031
  • Spectroscopic, A., Potential, Z., & Studies, C. (2021). To 04th December. The editor elucidating the binding mechanism of a cholesterol absorption inhibitor with a serum (Issue December), 2021.
  • Sudlow, G., Birkett, D. J., & Wade, D. N. (1976). Further characterization of specific drug binding sites on human serum albumin. Molecular Pharmacology, 12(6), 1052–LP1061.
  • Sun, X., Bi, S., Wu, J., Zhao, R., Shao, D., & Song, Z. (2020). Multispectral and molecular docking investigations on the interaction of primethamine/trimethoprim with BSA/HSA. Journal of Biomolecular Structure & Dynamics, 38(3), 934–942. https://doi.org/10.1080/07391102.2019.1588785
  • Suryawanshi, V. D., Walekar, L. S., Gore, A. H., Anbhule, P. V., & Kolekar, G. B. (2016). Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. Journal of Pharmaceutical Analysis, 6(1), 56–63. https://doi.org/10.1016/j.jpha.2015.07.001
  • Valojerdi, F. M., Farasat, A., Shariatifar, H., & Gheibi, N. (2020). Study of HSA interactions with arachidonic acid using spectroscopic methods revealing molecular dynamics of HSA-AA interactions. Biomedical Reports, 12(3), 125–133. https://doi.org/10.3892/br.2019.1270
  • Wani, T. A., Bakheit, A. H., Al-Majed, A. A., Altwaijry, N., Baquaysh, A., Aljuraisy, A., & Zargar, S. (2021a). Binding and drug displacement study of colchicine and bovine serum albumin in presence of azithromycin using multispectroscopic techniques and molecular dynamic simulation. Journal of Molecular Liquids, 333, 115934. https://doi.org/10.1016/j.molliq.2021.115934
  • Ware, W. R. (1962). Oxygen quenching of fluorescence in solution: An experimental study of the diffusion process. The Journal of Physical Chemistry, 66(3), 455–458. https://doi.org/10.1021/j100809a020
  • Yamasaki, K., Nishi, K., Anraku, M., Taguchi, K., Maruyama, T., & Otagiri, M. (2018). Metal-catalyzed oxidation of human serum albumin does not alter the interactive binding to the two principal drug binding sites. Biochemistry and Biophysics Reports, 14(April), 155–160. https://doi.org/10.1016/j.bbrep.2018.05.002
  • Yang, J., Huang, S. C., Wang, Y., Ji, M. Y., & Hu, Y. J. (2021). Multispectroscopic, electrochemical and molecular docking approaches on binding comparison of camptothecin, 10-hydroxycamptothecin to bovine serum albumin. Journal of Molecular Liquids, 326, 115296. https://doi.org/10.1016/j.molliq.2021.115296
  • Yang, F., Zhang, Y., & Liang, H. (2014). Interactive association of drugs binding to human serum albumin. International Journal of Molecular Sciences, 15(3), 3580–3595. https://doi.org/10.3390/ijms15033580
  • Yao, Y., Sangani, C. B., Duan, Y. T., Bhadja, P., & Ameta, R. K. (2021). Molecular modelling, thermal, adsorption and biological studies of conjugate Cu2+-BSA nanoparticles. Journal of Molecular Liquids, 331, 115732. https://doi.org/10.1016/j.molliq.2021.115732
  • Zhang, C. Y., Peng, X., Rao, H. J., Qi, W., Su, R. X., & He, Z. M. (2021). Spectroscopic Studies on the Interaction Between Salvianolic Acid B and Bovine Serum Albumin. Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 41(6), 1707. https://doi.org/10.3964/j.issn.1000-0593(2021)06-1701-07

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.