227
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Mannose 2, 3, 4, 5, 6-O-pentasulfate (MPS): a partial activator of human heparin cofactor II with anticoagulation potential

, , , , , , , , , ORCID Icon & show all
Pages 3717-3727 | Received 22 Sep 2021, Accepted 09 Mar 2022, Published online: 28 Mar 2022

References

  • Ahmad, I., Sharma, S., Gupta, N., Rashid, Q., Abid, M., Ashraf, M. Z., & Jairajpuri, M. A. (2018). Antithrombotic potential of esculin 7, 3′, 4′, 5′, 6′-O-pentasulfate (EPS) for its role in thrombus reduction using rat thrombosis model. International Journal of Biological Macromolecules, 119, 360–368.
  • Alam, M. M., Abul Qais, F., Ahmad, I., Alam, P., Hasan Khan, R., & Naseem, I. (2018). Multi-spectroscopic and molecular modelling approach to investigate the interaction of riboflavin with human serum albumin. Journal of Biomolecular Structure & Dynamics, 36(3), 795–809. https://doi.org/10.1080/07391102.2017.1298470
  • Baglin, T. P., Carrell, R. W., Church, F. C., Esmon, C. T., & Huntington, J. A. (2002). Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism. Proceedings of the National Academy of Sciences of the United States of America, 99(17), 11079–11084. https://doi.org/10.1073/pnas.162232399
  • Bano, S., Fatima, S., Ahamad, S., Ansari, S., Gupta, D., Tabish, M., ur Rehman, S., & Jairajpuri, M. A. (2020). Identification and characterization of a novel isoform of heparin cofactor II in human liver. IUBMB Life, 72(10), 2180–2193. https://doi.org/10.1002/iub.2361
  • Bhakuni, T., Ali, M. F., Ahmad, I., Bano, S., Ansari, S., & Jairajpuri, M. A. (2016). Role of heparin and non heparin binding serpins in coagulation and angiogenesis: A complex interplay. Archives of Biochemistry and Biophysics, 604, 128–142. https://doi.org/10.1016/j.abb.2016.06.018
  • Bhakuni, T., Sharma, A., Biswas, A., Bano, S., Mahapatra, M., Saxena, R., & Jairajpuri, M. A. (2020). Identification and characterization of a novel variant in C-terminal region of antithrombin (Ala427Thr) associated with type II AT deficiency leading to polymer formation. Journal of Thrombosis and Thrombolysis, 50(3), 678–685. https://doi.org/10.1007/s11239-020-02048-0
  • Boyle, A. J., Roddick, L. A., Bhakta, V., Lambourne, M. D., Junop, M. S., Liaw, P. C., Weitz, J. I., & Sheffield, W. P. (2013). The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand. BMC Biochemistry, 14, 6. https://doi.org/10.1186/1471-2091-14-6
  • Castillo, G., Snow, A. D., inventors, & ProteoTech Inc, assignee. (2008, May 13). Methods for using glucose pentasulfate for treating amyloid associated with type II diabetes. United States patent US 7,371,731.
  • Correia-da-Silva, M., Sousa, E., Duarte, B., Marques, F., Carvalho, F., Cunha-Ribeiro, L. M., & Pinto, M. M. (2011). Flavonoids with an oligopolysulfated moiety: A new class of anticoagulant agents. Journal of Medicinal Chemistry, 54(1), 95–106.
  • Correia-da-Silva, M., Sousa, E., & Pinto, M. M. (2014). Emerging sulfated flavonoids and other polyphenols as drugs: Nature as an inspiration. Medicinal Research Reviews, 34(2), 223–279. https://doi.org/10.1002/med.21282
  • Desai, U. R. (2004). New antithrombin-based anticoagulants. Medicinal Research Reviews, 24(2), 151–181. https://doi.org/10.1002/med.10058
  • Griffith, M. J., Noyes, C. M., & Church, F. C. (1985). Reactive site peptide structural similarity between heparin cofactor II and antithrombin III. International Journal of Biological Chemistry, 260(4), 2218–2225. https://doi.org/10.1016/S0021-9258(18)89541-2
  • Han, J. H., Van Deerlin, V. M., & Tollefsen, D. M. (1997). Heparin facilitates dissociation of complexes between thrombin and a reactive site mutant (L444R) of heparin cofactor II. Journal of Biological Chemistry, 272(13), 8243–8249. https://doi.org/10.1074/jbc.272.13.8243
  • He, L., Vicente, C., Westrick, R., Eitzman, D., & Tollefsen, D. (2002). Heparin cofactor II inhibits arterial thrombosis after endothelial injury. The Journal of Clinical Investigation, 109(2), 213–219. https://doi.org/10.1172/JCI0213432
  • Hu, X., Shi, Y., Zhang, P., Miao, M., Zhang, T., & Jiang, B. D. (2016). Mannose: Properties, production, and applications: An overview. Comprehensive Reviews in Food Science and Food Safety, 15(4), 773–785. https://doi.org/10.1111/1541-4337.12211
  • Huntington, J. A. (2005). Heparin activation of serpins. In Hari G. Garg, Robert J. Linhardt, Charles A. Hales (Eds.), Chemistry and biology of heparin and heparan sulfate (pp. 367–398). Elsevier.
  • Jairajpuri, M. A., Lu, A., Desai, U., Olson, S. T., Bjork, I., & Bock, S. C. (2003). Antithrombin III phenylalanines 122 and 121 contribute to its high affinity for heparin and its conformational activation. International Journal of Biological Chemistry, 278(18), 15941–15950. https://doi.org/10.1074/jbc.M212319200
  • Khan, A. B., Gupta, N., Rashid, Q., Ahmad, I., Bano, S., Siddiqui, U., Abid, M., & Jairajpuri, M. A. (2020). Quercetin 3, 3′, 4′, 5, 7-O-pentasulfate (QPS): A novel activator of protein disulfide isomerase. Medicine in Drug Discovery, 6(6), 100029. https://doi.org/10.1016/j.medidd.2020.100029
  • Khan, M. S., Hayat, M. U., Khanam, M., Saeed, H., Owais, M., Khalid, M., Shahid, M., & Ahmad, M. (2021). Role of biologically important imidazole moiety on the antimicrobial and anticancer activity of Fe(III) and Mn(II) complexes. Journal of Biomolecular Structure & Dynamics, 39(11), 4037–4050. https://doi.org/10.1080/07391102.2020.1776156
  • Khan, M. S., Khalid, M., Ahmad, M. S., Ahmad, M., Ashafaq, M., Rahisuddin, Arif, R., & Shahid, M. (2019). Synthesis, spectral and crystallographic study, DNA binding and molecular docking studies of homo dinuclear Co(II) and Ni(II) complexes. Journal of Molecular Structure, 1175, 889–899. https://doi.org/10.1016/j.molstruc.2018.08.048
  • Kumar, V., Prakash, A., Pandey, P., Lynn, A. M., & Hassan, M. I. (2018). TFE-induced local unfolding and fibrillation of SOD1: Bridging the experiment and simulation studies. The Biochemical Journal, 475(10), 1701–1719. https://doi.org/10.1042/BCJ20180085
  • Liaw, P. C., Becker, D. L., Stafford, A. R., Fredenburgh, J. C., & Weitz, J. I. (2001). Molecular basis for the susceptibility of fibrin-bound thrombin to inactivation by heparin cofactor II in the presence of dermatan sulfate but not heparin. The Journal of Biological Chemistry, 276(24), 20959–20965. https://doi.org/10.1074/jbc.M010584200
  • Nasheim, M. (2003). Thrombosis and fibrinolysis. Chest. The American College of Chest Physicians, 124, 18S–25S.
  • O’Keeffe, D., Olson, S., Gasiunas, N., Gallagher, J., Baglin, T., & Huntington, J. (2004). The heparin binding properties of heparin cofactor II suggest an antithrombin-like activation mechanism. The Journal of Biological Chemistry, 279(48), 50267–50273. https://doi.org/10.1074/jbc.M408774200
  • Prakash, A., Kumar, V., Lynn, A. M., & Haque, R. (2019). Insights into the DNA binding induced thermal stabilization of transcription factor FOXP3. Journal of Biomolecular Structure & Dynamics, 37(9), 2219–2229. https://doi.org/10.1080/07391102.2018.1486228
  • Qais, F. A., Alam, M. M., Naseem, I., & Ahmad, I. (2016). Understanding the mechanism of non-enzymatic glycation inhibition by cinnamic acid: An in vitro interaction and molecular modelling study. Royal Society of Chemistry Advances, 6, 65322–65337.
  • Rashid, Q., Abid, M., & Jairajpuri, M. (2014). Elucidating the specificity of non-heparin-based conformational activators of antithrombin for factor Xa inhibition. Journal of Natural Science, Biology, and Medicine, 5(1), 36–42. https://doi.org/10.4103/0976-9668.127282
  • Rashid, Q., Abid, M., Gupta, N., Tyagi, T., Ashraf, M. Z., & Jairajpuri, M. A. (2015). Polysulfated trehalose as a novel anticoagulant agent with dual mode of action. BioMed Research International, 2015, 1–11. https://doi.org/10.1155/2015/630482
  • Rashid, Q., Singh, P., Abid, M., & Jairajpuri, M. A. (2012). Limitations of conventional anticoagulant therapy and the promises of non-heparin based conformational activators of antithrombin. Journal of Thrombosis and Thrombolysis, 34(2), 251–259. https://doi.org/10.1007/s11239-012-0712-z
  • Rau, J. C., Beaulieu, L. M., Huntington, J. A., & Church, F. (2007). Serpins in thrombosis, hemostasis and fibrinolysis. Journal of Thrombosis and Haemostasis, 5, 102–115. https://doi.org/10.1111/j.1538-7836.2007.02516.x
  • Rau, J. C., Mitchell, J. W., Fortenberry, Y. M., & Church, F. C. (2011). Heparin cofactor II: Discovery, properties, and role in controlling vascular homeostasis. Seminars in Thrombosis and Hemostasis, 37(4), 339–348. https://doi.org/10.1055/s-0031-1276582
  • Reitsma, P. H., & Rosendaal, F. R. (2007). Past and future of genetic research in thrombosis. Journal of Thrombosis and Haemostasis, 5, 264–269. https://doi.org/10.1111/j.1538-7836.2007.02502.x
  • Rosendaal, F. R. (2005). Venous thrombosis: The role of genes, environment, and behavior. ASH Education Program Book 2005:1–2.
  • Sarilla, S., Habib, S. Y., Tollefsen, D. M., Friedman, D. B., Arnett, D. R., & Verhamme, I. M. (2010). Glycosaminoglycan-binding properties and kinetic characterization of human heparin cofactor II expressed in Escherichia coli. Analytical Biochemistry, 406(2), 166–175. https://doi.org/10.1016/j.ab.2010.07.024
  • Shirk, R. A., Church, F. C., & Wagner, W. D. (1996). Arterial smooth muscle cell heparan sulfate proteoglycans accelerate thrombin inhibition by heparin cofactor II. Arteriosclerosis, Thrombosis, and Vascular Biology, 16(9), 1138–1146. https://doi.org/10.1161/01.ATV.16.9.1138
  • Sutherland, J. S., Bhakta, V., & Sheffield, W. P. (2006). Investigating serpin-enzyme complex formation and stability via single and multiple residue reactive centre loop substitutions in heparin cofactor II. Thrombosis Research, 117(4), 447–461. https://doi.org/10.1016/j.thromres.2005.03.004
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Van Deerlin, V. M., & Tollefsen, D. M. (1991). The N-terminal acidic domain of heparin cofactor II mediates the inhibition of alpha-thrombin in the presence of glycosaminoglycans. Journal of Biological Chemistry, 266(30), 20223–20231. https://doi.org/10.1016/S0021-9258(18)54913-9
  • Verhamme, I. M., Bock, P. E., & Jackson, C. M. (2004). The preferred pathway of glycosaminoglycan-accelerated inactivation of thrombin by heparin cofactor II. International Journal of Biological Chemistry, 279(11), 9785–9795. https://doi.org/10.1074/jbc.M313962200
  • Wolberg, A. S., Aleman, M. M., Leiderman, K., & Machlus, K. R. (2012). Procoagulant activity in hemostasis and thrombosis: Virchow's triad revisited. Anesthesia and Analgesia, 114(2), 275–285. https://doi.org/10.1213/ANE.0b013e31823a088c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.