492
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mode of interaction of altretamine with calf thymus DNA: biophysical insights

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3728-3740 | Received 15 Nov 2021, Accepted 09 Mar 2022, Published online: 28 Mar 2022

References

  • Abdelhameed, A. S., Bakheit, A. H., AlRabiah, H. K., Hassan, E. S. G., & Almutairi, F. M. (2019). Molecular interactions of AL3818 (anlotinib) to human serum albumin as revealed by spectroscopic and molecular docking studies. Journal of Molecular Liquids, 273, 259–265. https://doi.org/10.1016/j.molliq.2018.10.025
  • Abu-Daya, A., Brown, P. M., & Fox, K. R. (1995). DNA sequence preferences of several AT-selective minor groove binding ligands. Nucleic Acids Research, 23(17), 3385–3392.
  • Agarwal, S., Jangir, D. K., & Mehrotra, R. (2013). Spectroscopic studies of the effects of anticancer drug mitoxantrone interaction with calf-thymus DNA. Journal of Photochemistry and Photobiology B: Biology, 120, 177–182. https://doi.org/10.1016/j.jphotobiol.2012.11.001
  • Agudelo, D., Bourassa, P., Bérubé, G., & Tajmir-Riahi, H. A. (2016). Review on the binding of anticancer drug doxorubicin with DNA and tRNA: Structural models and antitumor activity. Journal of Photochemistry and Photobiology B: Biology, 158, 274–279. https://doi.org/10.1016/j.jphotobiol.2016.02.032
  • Agudelo, D., Bourassa, P., Bérubé, G., & Tajmir-Riahi, H.-A. (2014). Intercalation of antitumor drug doxorubicin and its analogue by DNA duplex: Structural features and biological implications. International Journal of Biological Macromolecules, 66, 144–150.
  • Ahmad, A., & Ahmad, M. (2018). Deciphering the mechanism of interaction of edifenphos with calf thymus DNA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 188, 244–251. https://doi.org/10.1016/j.saa.2017.07.014
  • Ahmad, I., Ahmad, A., & Ahmad, M. (2016). Binding properties of pendimethalin herbicide to DNA: Multispectroscopic and molecular docking approaches. Physical Chemistry Chemical Physics : PCCP, 18(9), 6476–6485.
  • Ahmad, A., Zafar, A., Zargar, S., Bazgaifan, A., Wani, T. A., & Ahmad, M. (2021). Protective effects of apigenin against edifenphos-induced genotoxicity and cytotoxicity in rat hepatocytes. Journal of Biomolecular Structure and Dynamics, 1–16.
  • Alsaif, N. A., Al-Mehizia, A. A., Bakheit, A. H., Zargar, S., & Wani, T. A. (2020). A spectroscopic, thermodynamic and molecular docking study of the binding mechanism of dapoxetine with calf thymus DNA. South African Journal of Chemistry, 73, 44–50. https://doi.org/10.17159/0379-4350/2020/v73a7
  • Arif, A., Ahmad, A., & Ahmad, M. (2021). Toxicity assessment of carmine and its interaction with calf thymus DNA. Journal of Biomolecular Structure & Dynamics, 39(16), 5861–5871.
  • Arjmand, F., Parveen, S., Afzal, M., Toupet, L., & Hadda, B. (2012). Molecular drug design, synthesis and crystal structure determination of CuII–SnIV heterobimetallic core: DNA binding and cleavage studies. European Journal of Medicinal Chemistry, 49, 141–150.
  • Baguley, B. C. (1991). DNA intercalating anti-tumour agents. Anti-Cancer Drug Design, 6(1), 1–35.
  • Basu, A., & Kumar, G. S. (2013). Biophysical studies on curcumin–deoxyribonucleic acid interaction: Spectroscopic and calorimetric approach. International Journal of Biological Macromolecules, 62, 257–264.
  • Benesi, H. A., & Hildebrand, J. H. J. (1949). A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 71(8), 2703–2707. https://doi.org/10.1021/ja01176a030
  • Bera, R., Sahoo, B. K., Ghosh, K. S., & Dasgupta, S. (2008). Studies on the interaction of isoxazolcurcumin with calf thymus DNA. International Journal of Biological Macromolecules, 42(1), 14–21.
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Chaires, J. B. (1990). Biophysical chemistry of the daunomycin-DNA interaction. Biophysical Chemistry, 35(2-3), 191–202. https://doi.org/10.1016/0301-4622(90)80008-U
  • Chaires, J. B. (1998). Drug-DNA interactions. Current Opinion in Structural Biology, 8(3), 314–320. https://doi.org/10.1016/S0959-440X(98)80064-X
  • Chen, X. J., Wang, B. L., Zhou, K. L., Lou, Y. Y., Kou, S. B., Lin, Z. Y., & Shi, J. H. (2019a). Characterizing the binding interaction between erlotinib and calf thymus DNA in vitro using multi-spectroscopic methodologies and viscosity measurement combined with molecular docking and DFT calculation. ChemistrySelect, 4(13), 3774–3781. https://doi.org/10.1002/slct.201900089
  • Chen, K. Y., Zhou, K. L., Lou, Y. Y., & Shi, J. H. (2019b). Exploring the binding interaction of calf thymus DNA with lapatinib, a tyrosine kinase inhibitor: Multi-spectroscopic techniques combined with molecular docking. Journal of Biomolecular Structure & Dynamics, 37(3), 576–583. https://doi.org/10.1080/07391102.2018.1433067
  • Corradini, R., Sforza, S., Tedeschi, T., & Marchelli, R. (2007). Chirality as a tool in nucleic acid recognition: Principles and relevance in biotechnology and in medicinal chemistry. Chirality, 19(4), 269–294. https://doi.org/10.1002/chir.20372
  • Damia, G., & D'Incalci, M. (1995). Clinical pharmacokinetics of altretamine. Clinical Pharmacokinetics, 28(6), 439–448.
  • Das, S., & Kumar, G. S. (2008). Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid: Model for intercalative drug–DNA binding. Journal of Molecular Structure, 872(1), 56–63. https://doi.org/10.1016/j.molstruc.2007.02.016
  • DeLano, W. L. (2002). The PyMOL molecular graphics system. De-Lano Scientific. http://www.pymol.org.
  • Dervan, P. B. (2001). Molecular recognition of DNA by small molecules. Bioorganic & Medicinal Chemistry, 9(9), 2215–2235. https://doi.org/10.1016/s0968-0896(01)00262-0
  • Edwards, K. J., Jenkins, T. C., & Neidle, S. (1992). Crystal structure of a pentamidine-oligonucleotide complex: Implications for DNA-binding properties. Biochemistry, 31(31), 7104–7109.
  • Estandarte, A. K., Botchway, S., Lynch, C., Yusuf, M., & Robinson, I. (2016). The use of DAPI fluorescence lifetime imaging for investigating chromatin condensation in human chromosomes. Scientific Reports, 6(1), 1–12. https://doi.org/10.1038/srep31417
  • Ferguson, L. R., & Denny, W. A. (2007). Genotoxicity of non-covalent interactions: DNA intercalators. Mutation Research, 623(1-2), 14–23.
  • Frisch, M., & Clemente, F. (2009). Gaussian 09, Revision A. 01, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheeseman, G. Scalmani, V. Barone, B. Mennucci, GA Petersson, H. Nakatsuji, M. Caricato, X. Li, HP Hratchian, AF Izmaylov, J. Bloino, G. Zhe.
  • Froehlich, E., Mandeville, J. S., Weinert, C. M., Kreplak, L., & Tajmir-Riahi, H. A. (2011). Bundling and aggregation of DNA by cationic dendrimers. Biomacromolecules, 12(2), 511–517.
  • Ghosh, R., Bharathkar, S. K., & Kishore, N. (2019). Anticancer altretamine recognition by bovine serum albumin and its role as inhibitor of fibril formation: Biophysical insights. International Journal of Biological Macromolecules, 138, 359–369.
  • Ghosh, S., Kundu, P., Paul, B. K., & Chattopadhyay, N. (2014). Binding of an anionic fluorescent probe with calf thymus DNA and effect of salt on the probe–DNA binding: A spectroscopic and molecular docking investigation. RSC Adv, 4(108), 63549–63558. https://doi.org/10.1039/C4RA14298E
  • Gidwani, B., & Vyas, A. (2016). Preparation, characterization, and optimization of altretamine-loaded solid lipid nanoparticles using Box-Behnken design and response surface methodology. Artificial Cells. Artificial Cells, Nanomedicine, and Biotechnology, 44(2), 571–580.
  • Goswami, S., Ray, S., & Sarkar, M. (2016). Spectroscopic studies on the interaction of DNA with the copper complexes of NSAIDs lornoxicam and isoxicam. International Journal of Biological Macromolecules, 93(Pt A), 47–56.
  • Guan, Y., Zhou, W., Yao, X., Zhao, M., & Li, Y. (2006). Determination of nucleic acids based on the fluorescence quenching of Hoechst 33258 at pH 4.5. Analytica Chimica Acta, 570(1), 21–28. https://doi.org/10.1016/j.aca.2006.03.106
  • Haq, I. (2002). Thermodynamics of drug-DNA interactions. Archives of Biochemistry and Biophysics, 403(1), 1–15. https://doi.org/10.1016/S0003-9861(02)00202-3
  • Hasanzadeh, M., & Shadjou, N. (2016). Pharmacogenomic study using bio-and nanobioelectrochemistry: Drug–DNA interaction. Materials Science and Engineering: C, 61, 1002–1017. https://doi.org/10.1016/j.msec.2015.12.020
  • Hassanzadeh, K., Akhtari, K., Esmaeili, S. S., Vaziri, A., Zamani, H., Maghsoodi, M., Noori, S., Moradi, A., & Hamidi, P. (2016). Encapsulation of thiotepa and altretamine as neurotoxic anticancer drugs in Cucurbit [n] uril (n = 7, 8) nanocapsules: A DFT study. Journal of Theoretical and Computational Chemistry, 15(07), 1650056. https://doi.org/10.1142/S0219633616500565
  • Husain, M. A., Rehman, S. U., Ishqi, H. M., Sarwar, T., & Tabish, M. (2015). Spectroscopic and molecular docking evidence of aspirin and diflunisal binding to DNA: A comparative study. RSC Advances, 5(79), 64335–64345. https://doi.org/10.1039/C5RA09181K
  • Husain, M., Yaseen, Z., Rehman, S. U., Sarwar, T., & Tabish, M. (2013). Naproxen intercalates with DNA and causes photocleavage through ROS generation. The FEBS Journal, 280(24), 6569–6580.
  • Jana, B., Senapati, S., Ghosh, D., Bose, D., & Chattopadhyay, N. (2012). Spectroscopic exploration of mode of binding of ctDNA with 3-hydroxyflavone: A contrast to the mode of binding with flavonoids having additional hydroxyl groups. The Journal of Physical Chemistry B, 116(1), 639–645. https://doi.org/10.1021/jp2094824
  • Kabir, A., & Kumar, G. S. (2014). Probing the interaction of spermine and 1-naphthyl acetyl spermine with DNA polynucleotides: A comparative biophysical and thermodynamic investigation. Molecular bioSystems, 10(5), 1172–1183.
  • Kakkar, R., & Garg, R, et al. (2002). Theoretical study of tautomeric structures and fluorescence spectra of Hoechst 33258. Journal of Molecular Structure: THEOCHEM, 579(1–3), 109–113.
  • Keldsen, N., Havsteen, H., Vergote, I., Bertelsen, K., & Jakobsen, A. (2003). Altretamine (hexamethylmelamine) in the treatment of platinum-resistant ovarian cancer: A phase II study. Gynecologic Oncology, 88(2), 118–122.
  • Kellett, A., Molphy, Z., Slator, C., McKee, V., & Farrell, N. P. (2019). Molecular methods for assessment of non-covalent metallodrug–DNA interactions. Chemical Society Reviews, 48(4), 971–988.
  • Khajeh, M. A., Dehghan, G., Dastmalchi, S., Shaghaghi, M., & Iranshahi, M. (2018). Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192, 384–392. https://doi.org/10.1016/j.saa.2017.11.042
  • Khaleghian, M., & Azarakhshi, F. (2019). Theoretical modelling of encapsulation of the altretamine drug into BN (9, 9-5) and AlN (9, 9-5) nano rings: A DFT study. Molecular Physics, 117(18), 2559–2569. https://doi.org/10.1080/00268976.2019.1574987
  • Kirchhoff, W. H. (1993). EXAM, a two-state thermodynamic analysis program. US Department of Commerce, National Institute of Standards andTechnology.
  • Kou, S. B., Zhou, K. L., Lin, Z. Y., Lou, Y. Y., Wang, B. L., Shi, J. H., & Liu, Y. X. (2020). Investigation of binding characteristics of ritonavir with calf thymus DNA with the help of spectroscopic techniques and molecular simulation. Journal of Biomolecular Structure and Dynamics, 1–9. https://doi.org/10.1080/07391102.2020.1844057
  • Kundu, P., & Chattopadhyay, N. (2017). Interaction of a bioactive pyrazole derivative with calf thymus DNA: Deciphering the mode of binding by multi-spectroscopic and molecular docking investigations. Journal of Photochemistry and Photobiology B: Biology, 173, 485–492. https://doi.org/10.1016/j.jphotobiol.2017.06.022
  • Kundu, P., Ghosh, S., & Chattopadhyay, N. (2015). Exploration of the binding interaction of a potential nervous system stimulant with calf-thymus DNA and dissociation of the drug–DNA complex by detergent sequestration. Physical Chemistry Chemical Physics : PCCP, 17(27), 17699–17709.
  • Kypr, J., & Vorlíčková, M. (2002). Circular dichroism spectroscopy reveals invariant conformation of guanine runs in DNA. Biopolymers, 67(4-5), 275–277. https://doi.org/10.1002/bip.10112
  • Li, X.-L., Hu, Y.-J., Wang, H., Yu, B.-Q., & Yue, H.-L. (2012). Molecular spectroscopy evidence of berberine binding to DNA: Comparative binding and thermodynamic profile of intercalation. Biomacromolecules, 13(3), 873–880. https://doi.org/10.1021/bm2017959
  • Luo, Y. J., Wang, B. L., Kou, S. B., Lin, Z. Y., Zhou, K. L., Lou, Y. Y., & Shi, J. H. (2020). Assessment on the binding characteristics of dasatinib, a tyrosine kinase inhibitor to calf thymus DNA: Insights from multi-spectroscopic methodologies and molecular docking as well as DFT calculation. Journal of Biomolecular Structure & Dynamics, 38(14), 4210–4220.
  • Mati, S. S., Roy, S. S., Chall, S., Bhattacharya, S., & Bhattacharya, S. C. (2013). Unveiling the groove binding mechanism of a biocompatible naphthalimide-based organoselenocyanate with calf thymus DNA: An “ex vivo” fluorescence imaging application appended by biophysical experiments and molecular docking simulations. The Journal of Physical Chemistry. B, 117(47), 14655–14665. https://doi.org/10.1021/jp4090553
  • Mergny, J. L., Duval-Valentin, G., Nguyen, C. H., Perrouault, L., Faucon, B., Rougée, M., Montenay-Garestier, T., Bisagni, E., & Hélène, C. (1992). Triple helix-specific ligands. Science (New York, N.Y.), 256(5064), 1681–1684.
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Mukherjee, A., & Singh, B. (2017). Binding interaction of pharmaceutical drug captopril with calf thymus DNA: A multispectroscopic and molecular docking study. Journal of Luminescence, 190, 319–327. https://doi.org/10.1016/j.jlumin.2017.05.068
  • Neidle, S. (2001). DNA minor-groove recognition by small molecules. Natural Product Reports, 18(3), 291–309. https://doi.org/10.1039/a705982e
  • Olmsted, I. I. I., & J., Kearns, D. R. (1977). Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry, 16(16), 3647–3654.
  • Ozluer, C., & Kara, H. E. S. (2014). In vitro DNA binding studies of anticancer drug idarubicin using spectroscopic techniques. Journal of Photochemistry and Photobiology B: Biology, 138, 36–42. https://doi.org/10.1016/j.jphotobiol.2014.05.015
  • Paul, B. K., & Guchhait, N. (2011). Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: Implication on dissociation of the drug–DNA complex via detergent sequestration. The Journal of Physical Chemistry. B, 115(41), 11938–11949.
  • Rafique, B., Khalid, A. M., Akhtar, K., & Jabbar, A. (2013). Interaction of anticancer drug methotrexate with DNA analyzed by electrochemical and spectroscopic methods. Biosensors & Bioelectronics, 44, 21–26.
  • Rahman, Y., Afrin, S., Husain, M. A., Sarwar, T., Ali, A., Tabish., & M., others. (2017). Unravelling the interaction of pirenzepine, a gastrointestinal disorder drug, with calf thymus DNA: An in vitro and molecular modelling study. Archives of Biochemistry and Biophysics, 625, 1–12.
  • Rehman, S. U., Sarwar, T., Husain, M. A., Ishqi, H. M., & Tabish, M. (2015). Studying non-covalent drug–DNA interactions. Archives of Biochemistry and Biophysics, 576, 49–60.
  • Rescifina, A., Zagni, C., Varrica, M. G., Pistarà, V., & Corsaro, A. (2014). Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling. European Journal of Medicinal Chemistry, 74, 95–115.
  • Rohs, R., Bloch, I., Sklenar, H., & Shakked, Z. (2005). Molecular flexibility in ab initio drug docking to DNA: Binding-site and binding-mode transitions in all-atom Monte Carlo simulations. Nucleic Acids Research, 33(22), 7048–7057.
  • Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 20(11), 3096–3102.
  • Rothenberg, M., Liu, P. Y., Wilczynski, S., Hannigan, E., Weiner, S., Weiss, G., Hunter, V., Chapman, J., Tiersten, A., Kohler, P., & Alberts, D. (2001). Phase II trial of oral altretamine for consolidation of clinical complete remission in women with stage III epithelial ovarian cancer: A Southwest Oncology Group trial (SWOG-9326). Gynecologic Oncology, 82(2), 317–322. https://doi.org/10.1006/gyno.2001.6274
  • Roy, S., Banerjee, R., & Sarkar, M. (2006). Direct binding of Cu (II)-complexes of oxicam NSAIDs with DNA backbone. Journal of Inorganic Biochemistry, 100(8), 1320–1331.
  • Sadighbayan, D., Sadighbayan, K., Khosroushahi, A. Y., & Hasanzadeh, M. (2019). Recent advances on the DNA-based electrochemical biosensing of cancer biomarkers: Analytical approach. TrAC Trends in Analytical Chemistry, 119, 115609. https://doi.org/10.1016/j.trac.2019.07.020
  • Sahoo, D., Bhattacharya, P., & Chakravorti, S. (2010). Quest for mode of binding of 2-(4-(dimethylamino) styryl)-1-methylpyridinium iodide with calf thymus DNA. The Journal of Physical Chemistry. B, 114(5), 2044–2050.
  • Sahoo, B. K., Ghosh, K. S., Bera, R., & Dasgupta, S. (2008). Studies on the interaction of diacetylcurcumin with calf thymus-DNA. Chemical Physics, 351(1-3), 163–169. https://doi.org/10.1016/j.chemphys.2008.05.008
  • Sarwar, T., Rehman, S. U., Husain, M. A., Ishqi, H. M., & Tabish, M. (2015). Interaction of coumarin with calf thymus DNA: Deciphering the mode of binding by in vitro studies. International Journal of Biological Macromolecules, 73, 9–16.
  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and autodock/vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422.
  • Seth, B. K., Ray, A., Saha, A., Saha, P., & Basu, S. (2014). Potency of photoinduced electron transfer and antioxidant efficacy of pyrrole and pyridine based Cu (II)-Schiff complexes while binding with CT-DNA. Journal of Photochemistry and Photobiology B: Biology, 132, 72–84. https://doi.org/10.1016/j.jphotobiol.2014.02.007
  • Shahabadi, N., & Hadidi, S. (2012). Spectroscopic studies on the interaction of calf thymus DNA with the drug levetiracetam. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 96, 278–283. https://doi.org/10.1016/j.saa.2012.05.045
  • Sirajuddin, M., Ali, S., & Badshah, A. (2013). Drug–DNA interactions and their study by UV–Visible, fluorescence spectroscopies and cyclic voltametry. Journal of Photochemistry and Photobiology B: Biology, 124, 1–19. https://doi.org/10.1016/j.jphotobiol.2013.03.013
  • Snyder, R. D. (2007). Assessment of atypical DNA intercalating agents in biological and in silico systems. Mutation Research, 623(1–2), 72–82. https://doi.org/10.1016/j.mrfmmm.2007.03.006
  • Strekowski, L., & Wilson, B. (2007). Noncovalent interactions with DNA: An overview. Mutation Research, 623(1-2), 3–13.
  • Talwar, V., Goel, V., Raina, S., Patnaik, N., & Doval, D. C. (2016). Altretamine in advanced pretreated epithelial ovarian carcinoma patients. Experience from a Center in North India. Current Medicine Research and Practice, 6(3), 109–112. https://doi.org/10.1016/j.cmrp.2016.04.003
  • Tanious, F. A., Veal, J. M., Buczak, H., Ratmeyer, L. S., & Wilson, W. D. (1992). DAPI (4',6-diamidino-2-phenylindole) binds differently to DNA and RNA: Minor-groove binding at AT sites and intercalation at AU sites. Biochemistry, 31(12), 3103–3112. https://doi.org/10.1021/bi00127a010
  • Vaidyanathan, V. G., & Nair, B. U. (2003). Photooxidation of DNA by a cobalt (II) tridentate complex. Journal of Inorganic Biochemistry, 94(1-2), 121–126.
  • Wakelin, L. P. G. (1986). Polyfunctional DNA intercalating agents. Medicinal Research Reviews, 6(3), 275–340. https://doi.org/10.1002/med.2610060303
  • Wani, T. A., Alsaif, N., Alanazi, M. M., Bakheit, A. H., Zargar, S., & Bhat, M. A. (2021). A potential anticancer dihydropyrimidine derivative and its protein binding mechanism by multispectroscopic, molecular docking and molecular dynamic simulation along with its in-silico toxicity and metabolic profile. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 158, 105686.
  • Wani, T. A., Bakheit, A. H., Al-Majed, A. A., Altwaijry, N., Baquaysh, A., Aljuraisy, A., & Zargar, S. (2021). Binding and drug displacement study of colchicine and bovine serum albumin in presence of azithromycin using multispectroscopic techniques and molecular dynamic simulation. Journal of Molecular Liquids, 333, 115910–115934. https://doi.org/10.1016/j.molliq.2021.115934
  • Wani, T. A., Bakheit, A. H., Zargar, S., Bhat, M. A., & Al-Majed, A. A. (2019). Molecular docking and experimental investigation of new indole derivative cyclooxygenase inhibitor to probe its binding mechanism with bovine serum albumin. Bioorganic Chemistry, 89, 103010. https://doi.org/10.1016/j.bioorg.2019.103010
  • Willis, B., & Arya, D. P. (2006). Major groove recognition of DNA by carbohydrates. Current Organic Chemistry, 10(6), 663–673. https://doi.org/10.2174/138527206776359739
  • Willis, B., & Arya, D. P. (2009). Triple recognition of B-DNA. Bioorganic & Medicinal Chemistry Letters, 19(17), 4974–4979. https://doi.org/10.1016/j.bmcl.2009.07.079
  • Willis, B., & Arya, D. P. (2010). Triple recognition of B-DNA by a neomycin-Hoechst 33258-pyrene conjugate. Biochemistry, 49(3), 452–469.
  • Wu, H., Jia, F., Kou, F., Liu, B., Yuan, J., & Bai, Y. (2011). A Schiff base ligand N-(2-hydroxylacetophenone)-3-oxapentane-1, 5-diamine and its nickel (II) complex: Synthesis, crystal structure, antioxidation, and DNA-binding properties. Transition Metal Chemistry, 36(8), 847–853. https://doi.org/10.1007/s11243-011-9539-2
  • Xi, J., & Guo, R. (2007). Interactions between flavonoids and hemoglobin in lecithin liposomes. International Journal of Biological Macromolecules, 40(4), 305–311.
  • Yang, X.-L., & Wang, A. H.-J. (1999). Structural studies of atom-specific anticancer drugs acting on DNA. Pharmacology & Therapeutics, 83(3), 181–215.
  • Yunus, G., Srivastava, S., Kuddus, M., & Gupta, V. D. (2013). Drug–DNA interaction: A theoretical study on the binding of thionine with DNAs of varying base composition. Current Applied Physics, 13(2), 322–326. https://doi.org/10.1016/j.cap.2012.05.020
  • Zaidi, N., Ajmal, M. R., Rabbani, G., Ahmad, E., & Khan, R. H. (2013). A comprehensive insight into binding of hippuric acid to human serum albumin: A study to uncover its impaired elimination through hemodialysis. PloS One, 8(8), e71422. https://doi.org/10.1371/journal.pone.0071422
  • Zargar, S., & Wani, T. A. (2021). Exploring the binding mechanism and adverse toxic effects of persistent organic pollutant (dicofol) to human serum albumin: A biophysical, biochemical and computational approach. Chemico-Biological Interactions, 350, 109707.
  • Zhang, G., Fu, P., & Pan, J. (2013). Multispectroscopic studies of paeoniflorin binding to calf thymus DNA in vitro. Journal of Luminescence, 134, 303–309. https://doi.org/10.1016/j.jlumin.2012.08.029
  • Zhou, X., Zhang, G., & Pan, J. (2015). Groove binding interaction between daphnetin and calf thymus DNA. International Journal of Biological Macromolecules, 74, 185–194.
  • Zsila, F., Bikádi, Z., & Simonyi, M. (2004). Circular dichroism spectroscopic studies reveal pH dependent binding of curcumin in the minor groove of natural and synthetic nucleic acids. Organic & Biomolecular Chemistry, 2(20), 2902–2910. https://doi.org/10.1039/B409724F

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.