438
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Design of a multi-epitope Zika virus vaccine candidate – an in-silico study

, ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 3762-3771 | Received 21 Oct 2021, Accepted 15 Mar 2022, Published online: 23 Mar 2022

References

  • Andreatta, M., Karosiene, E., Rasmussen, M., Stryhn, A., Buus, S., & Nielsen, M. (2015). Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics, 67(11–12), 641–650. https://doi.org/10.1007/s00251-015-0873-y
  • Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering, 14(8), 529–532. https://doi.org/10.1093/protein/14.8.529
  • Bazhan, S. I., Antonets, D. V., Karpenko, L. I., Oreshkova, S. F., Kaplina, O. N., Starostina, E. V., Dudko, S. G., Fedotova, S. A., & Ilyichev, A. A. (2019). In silico designed ebola virus T-cell multi-epitope DNA vaccine constructions are immunogenic in mice. Vaccines, 7(2), 34. https://doi.org/10.3390/vaccines7020034
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhatnager, R., Bhasin, M., Arora, J., & Dang, A. S. (2021). Epitope based peptide vaccine against SARS-COV2: An immune-informatics approach. Journal of Biomolecular Structure & Dynamics, 39(15), 5690–5705. https://doi.org/10.1080/07391102.2020.1787227
  • Buus, S., Lauemøller, S. L., Worning, P., Kesmir, C., Frimurer, T., Corbet, S., Fomsgaard, A., Hilden, J., Holm, A., & Brunak, S. (2003). Sensitive quantitative predictions of peptide-MHC binding by a “'Query by Committee' artificial neural network approach”. Tissue Antigens, 62(5), 378–384. https://doi.org/10.1034/j.1399-0039.2003.00112.x
  • Carpio, K. L., & Barrett, A. D. T. (2021). Flavivirus NS1 and its potential in vaccine development. Vaccines, 9(6), 622. https://doi.org/10.3390/vaccines9060622
  • Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Research, 33(Web Server issue), W72–76. https://doi.org/10.1093/nar/gki396
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Dawood, R. M., Moustafa, R. I., Abdelhafez, T. H., El-Shenawy, R., El-Abd, Y., Bader El Din, N. G., Dubuisson, J., El Awady, M. K. A. (2019). Multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice. BMC Infect Dis, 19(1), 932. https://doi.org/10.1186/s12879-019-4571-5
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. Methods in Enzymology, 277, 396–404. https://doi.org/10.1016/s0076-6879(97)77022-8
  • Ezzemani, W., Windisch, M. P., Kettani, A., Altawalah, H., Nourlil, J., Benjelloun, S., & Ezzikouri, S. (2021a). Immuno-informatics-based identification of novel potential B cell and T cell epitopes to fight Zika virus infections. Infectious Disorders Drug Targets, 21(4), 572–581. https://doi.org/10.2174/1871526520666200810153657
  • Gopalakrishnan, K., Sowmiya, G., Sheik, S. S., & Sekar, K. (2007). Ramachandran plot on the web (2.0). Protein and Peptide Letters, 14(7), 669–671. https://doi.org/10.2174/092986607781483912
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G, Open Source Drug Discovery Consortium. (2013). In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking.Nucleic Acids Research, 41(Web Server issue), W384–388. https://doi.org/10.1093/nar/gkt458
  • Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. Journal of Biochemistry, 88(6), 1895–1898.
  • Kazi, A., Chuah, C., Majeed, A. B. A., Leow, C. H., Lim, B. H., & Leow, C. Y. (2018). Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design. Pathogens and Global Health, 112(3), 123–131. https://doi.org/10.1080/20477724.2018.1446773
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement.Nucleic Acids Research, 40(Web Server issueissue), W294–297. https://doi.org/10.1093/nar/gks493
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kyte, J., & Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology, 157(1), 105–132. https://doi.org/10.1016/0022-2836(82)90515-0
  • Laskowski, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37(Database issue), D355–359. https://doi.org/10.1093/nar/gkn860
  • Li, P.-C., Jang, J., Hsia, C.-Y., Groomes, P. V., Lian, W., de Wispelaere, M., Pitts, J. D., Wang, J., Kwiatkowski, N., Gray, N. S., & Yang, P. L. (2019). Small molecules targeting the Flavivirus E protein with broad-spectrum activity and antiviral efficacy in vivo. ACS Infectious Diseases, 5(3), 460–472. https://doi.org/10.1021/acsinfecdis.8b00322
  • Lin, H.-H., Yip, B.-S., Huang, L.-M., & Wu, S.-C. (2018). Zika virus structural biology and progress in vaccine development. Biotechnology Advances, 36(1), 47–53. https://doi.org/10.1016/j.biotechadv.2017.09.004
  • Liu, C. C., Chou, A. H., Lien, S. P., Lin, H. Y., Liu, S. J., Chang, J. Y., Guo, M. S., Chow, Y. H., Yang, W. S., Chang, K. H., Sia, C., Chong, P. (2011). Identification and characterization of a cross-neutralization epitope of Enterovirus 71. Vaccine, 29(26), 4362–4372. https://doi.org/10.1016/j.vaccine.2011.04.010
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–276. https://doi.org/10.1093/nar/gku339
  • Lundegaard, C., Lamberth, K., Harndahl, M., Buus, S., Lund, O., & Nielsen, M. (2008). NetMHC-3.0: Accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Research, 36(Web Server issue), W509–512. https://doi.org/10.1093/nar/gkn202
  • Lundegaard, C., Nielsen, M., & Lund, O. (2006). The validity of predicted T-cell epitopes. Trends in Biotechnology, 24(12), 537–538. https://doi.org/10.1016/j.tibtech.2006.10.001
  • Magnan, C. N., Randall, A., & Baldi, P. (2009). SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics (Oxford, England), 25(17), 2200–2207. https://doi.org/10.1093/bioinformatics/btp386
  • Mohan, T., Sharma, C., Bhat, A. A., & Rao, D. N. (2013). Modulation of HIV peptide antigen specific cellular immune response by synthetic α- and β-defensin peptides. Vaccine, 31(13), 1707–1716. https://doi.org/10.1016/j.vaccine.2013.01.041
  • Mukherjee, S., Karmakar, S., & Babu, S. P. S. (2016). TLR2 and TLR4 mediated host immune responses in major infectious diseases: A review. The Brazilian Journal of Infectious Diseases: An Official Publication of the Brazilian Society of Infectious Diseases, 20(2), 193–204. https://doi.org/10.1016/j.bjid.2015.10.011
  • Musso, D., & Gubler, D. J. (2016). Zika virus. Clinical Microbiology Reviews, 29(3), 487–524. https://doi.org/10.1128/CMR.00072-15
  • Negahdaripour, M., Eslami, M., Nezafat, N., Hajighahramani, N., Ghoshoon, M. B., Shoolian, E., Dehshahri, A., Erfani, N., Morowvat, M. H., & Ghasemi, Y. (2017). A novel HPV prophylactic peptide vaccine, designed by immunoinformatics and structural vaccinology approaches. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 54, 402–416. https://doi.org/10.1016/j.meegid.2017.08.002
  • Nielsen, M., Lundegaard, C., Worning, P., Lauemøller, S. L., Lamberth, K., Buus, S., Brunak, S., & Lund, O. (2003). Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Science: A Publication of the Protein Society, 12(5), 1007–1017. https://doi.org/10.1110/ps.0239403
  • Paul ,S., Sidney, J., Sette, A., Peters, B. (2016). TepiTool: A Pipeline for Computational Prediction of T Cell Epitope Candidates. Curr Protoc Immunol, 114, 18.19.1–18.19.24. https://doi.org/10.1002/cpim.12
  • Patronov, A., & Doytchinova, I. (2013). T-cell epitope vaccine design by immunoinformatics. Open Biology, 3(1), 120139. https://doi.org/10.1098/rsob.120139
  • Plourde, A. R., & Bloch, E. M. (2016). A literature review of Zika virus. Emerging Infectious Diseases, 22(7), 1185–1192. https://doi.org/10.3201/eid2207.151990
  • Poland, G. A., Ovsyannikova, I. G., & Kennedy, R. B. (2019). Zika vaccine development: Current status. Mayo Clinic Proceedings, 94(12), 2572–2586. https://doi.org/10.1016/j.mayocp.2019.05.016
  • Prasasty, V. D., Grazzolie, K., Rosmalena, R., Yazid, F., Ivan, F. X., & Sinaga, E. (2019). Peptide-based subunit vaccine design of T- and B-cells multi-epitopes against Zika virus using immunoinformatics approaches. Microorganisms, 7(8), 226. https://doi.org/10.3390/microorganisms7080226
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rappuoli, R. (2000). Reverse vaccinology. Current Opinion in Microbiology, 3(5), 445–450. https://doi.org/10.1016/S1369-5274(00)00119-3
  • Russo, F. B., Jungmann, P., & Beltrão-Braga, P. C. B. (2017). Zika infection and the development of neurological defects. Cellular Microbiology, 19(6), e12744. https://doi.org/10.1111/cmi.12744
  • Salvador, E. A., Pires de Souza, G. A., Cotta Malaquias, L. C., Wang, T., & Leomil Coelho, L. F. (2019). Identification of relevant regions on structural and nonstructural proteins of Zika virus for vaccine and diagnostic test development: An in silico approach. New Microbes and New Infections, 29, 100506. https://doi.org/10.1016/j.nmni.2019.01.002
  • Sharma, N., Patiyal, S., Dhall, A., Pande, A., Arora, C., & Raghava, G. P. S. (2021). AlgPred 2.0: An improved method for predicting allergenic proteins and mapping of IgE epitopes. Briefings in Bioinformatics, 22(4), bbaa294. https://doi.org/10.1093/bib/bbaa294
  • Sidney, J., Peters, B., Frahm, N., Brander, C., Sette, A. (2008). HLA class I supertypes: a revised and updated classification. BMC Immunol, 22(9),1. https://doi.org/10.1186/1471-2172-9-1
  • Sirohi, D., & Kuhn, R. J. (2017). Zika virus structure, maturation, and receptors. The Journal of Infectious Diseases, 216(suppl_10), S935–S944. https://doi.org/10.1093/infdis/jix515
  • Song, B.-H., Yun, S.-I., Woolley, M., & Lee, Y.-M. (2017). Zika virus: History, epidemiology, transmission, and clinical presentation. Journal of Neuroimmunology, 308, 50–64. https://doi.org/10.1016/j.jneuroim.2017.03.001
  • Srivastava, S., Kamthania, M., Singh, S., Saxena, A. K., & Sharma, N. (2018). Structural basis of development of multi-epitope vaccine against Middle East respiratory syndrome using in silico approach. Infection and Drug Resistance, 11, 2377–2391. https://doi.org/10.2147/IDR.S175114
  • Toman, M., Celer, V., Kavanová, L., Levá, L., Frolichova, J., Ondráčková, P., Kudláčková, H., Nechvátalová, K., Salat, J., & Faldyna, M. (2019). Dynamics and differences in systemic and local immune responses after vaccination with inactivated and live commercial vaccines and subsequent subclinical infection with PRRS virus. Frontiers in Immunology, 10, 1689. https://doi.org/10.3389/fimmu.2019.01689
  • Vita, R., Mahajan, S., Overton, J. A., Dhanda, S. K., Martini, S., Cantrell, J. R., Wheeler, D. K., Sette, A., & Peters, B. (2019). The immune epitope database (IEDB): 2018 update. Nucleic Acids Research, 47(D1), D339–D343. https://doi.org/10.1093/nar/gky1006
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–410. https://doi.org/10.1093/nar/gkm290
  • Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D., & Hochstrasser, D. F. (1999). Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology (Clifton, N.J)112, 531–552. https://doi.org/10.1385/1-59259-584-7:531
  • Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cellular & Molecular Immunology, 15(2), 182–184. https://doi.org/10.1038/cmi.2017.92
  • Zhang, Q., Wang, P., Kim, Y., Haste-Andersen, P., Beaver, J., Bourne, P. E., Bui, H.-H., Buus, S., Frankild, S., Greenbaum, J., Lund, O., Lundegaard, C., Nielsen, M., Ponomarenko, J., Sette, A., Zhu, Z., & Peters, B. (2008). Immune epitope database analysis resource (IEDB-AR). Nucleic Acids Research, 36(Web Server issue), W513–518. https://doi.org/10.1093/nar/gkn254

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.