615
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Phenolic compounds as α-glucosidase inhibitors: a docking and molecular dynamics simulation study

ORCID Icon, ORCID Icon & ORCID Icon
Pages 3862-3871 | Received 07 Sep 2021, Accepted 20 Mar 2022, Published online: 01 Apr 2022

References

  • Aminudin, N. I., Ahmad, F., Taher, M., & Zulkifli, R. M. (2015). ) α-Glucosidase and 15-lipoxygenase inhibitory activities of phytochemicals from Calophyllum symingtonianum. Natural Product Communications, 10(9), 1585–1587. https://doi.org/10.1177/1934578X1501000925
  • Bischoff, H. (1995). The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clinical and Investigative Medicine. Medecine Clinique et Experimentale, 18(4), 303–311.
  • Blaney, J. (2012). A very short history of structure-based design: How did we get here and where do we need to go? Journal of Computer-Aided Molecular Design, 26(1), 13–14. https://doi.org/10.1007/s10822-011-9518-x
  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047
  • Chiba, S. (1997). Molecular mechanism in alpha-glucosidase and glucoamylase. Bioscience, Biotechnology, and Biochemistry, 61(8), 1233–1239. https://doi.org/10.1271/bbb.61.1233
  • Dabhi, A. S., Bhatt, N. R., & Shah, M. J. (2013). Voglibose: an alpha glucosidase inhibitor. Journal of Clinical and Diagnostic Research, 7(12), 3023–3027. https://doi.org/10.7860/JCDR/2013/6373.3838
  • Damián-Medina, K., Salinas-Moreno, Y., Milenkovic, D., Figueroa-Yáñez, L., Marino-Marmolejo, E., Higuera-Ciapara, I., Vallejo-Cardona, A., & Lugo-Cervantes, E. (2020). In silico analysis of antidiabetic potential of phenolic compounds from blue corn (Zea mays L.) and black bean (Phaseolus vulgaris L.). Heliyon, 6(3), e03632. https://doi.org/10.1016/j.heliyon.2020.e03632
  • Di Lorenzo, C., Colombo, F., Biella, S., Stockley, C., & Restani, P. (2021). Polyphenols and human health: the role of bioavailability. Nutrients, 13(1), 273. https://doi.org/10.3390/nu13010273
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Etsassala, N. G. E. R., Badmus, J. A., Marnewick, J. L., Iwuoha, E. I., Nchu, F., & Hussein, A. A. (2020). Alpha-glucosidase and alpha-amylase inhibitory activities, molecular docking, and antioxidant capacities of Salvia aurita constituents. Antioxidants, 9(11), 1149. https://doi.org/10.3390/antiox9111149
  • Fang, D., Miaomiao, X., & Junxian, W. (2013). ) α-Glucosidase and α-amylase inhibitory activities of saponins from traditional Chinese medicines in the treatment of diabetes mellitus. Die Pharmazie – An. International Journal of Pharmacy and Pharmaceutical Sciences, 68(4), 300–304. https://doi.org/10.1691/ph.2013.2753
  • Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules (Basel, Switzerland), 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384
  • Gandhi, G. R., Ignacimuthu, S., & Paulraj, M. G. (2011). Solanum torvum Swartz. fruit containing phenolic compounds shows antidiabetic and antioxidant effects in streptozotocin induced diabetic rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 49(11), 2725–2733. https://doi.org/10.1016/j.fct.2011.08.005
  • Gschwend, D. A., Good, A. C., & Kuntz, I. D. (1996). Molecular docking towards drug discovery. Journal of Molecular Recognition, 9(2), 175–186. https://doi.org/10.1002/(SICI)1099-1352(199603)9:2<175::AID-JMR260>3.0.CO;2-D
  • Harrach, M. F., & Drossel, B. (2014). Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity. The Journal of Chemical Physics, 140(17), 174501. https://doi.org/10.1063/1.4872239
  • Hwang, H., Dey, F., Petrey, D., & Honig, B. (2017). Structure-based prediction of ligand-protein interactions on a genome-wide scale. Proceedings of the National Academy of Sciences of the United States of America, 114(52), 13685–13690. https://doi.org/10.1073/pnas.1705381114
  • Jaiswal, N., Bhatia, V., Srivastava, S. P., Srivastava, A. K., & Tamrakar, A. K. (2012). Anti-diabetic effect of Eclipta alba associated with the inhibition of alpha-glucosidase and aldose reductase. Natural Product Research, 26(24), 2363–2367. https://doi.org/10.1080/14786419.2012.662648
  • Kacem, R. (2013). Phenolic compounds from medicinal plants as natural anti-elastase products for the therapy of pulmonary emphysema. Journal of Medicinal Plants Research, 7(48), 3499–3507. https://doi.org/10.5897/JMPR12.865
  • Khoddami, A., Wilkes, M. A., & Roberts, T. H. (2013). Techniques for analysis of plant phenolic compounds. Molecules (Basel, Switzerland), 18(2), 2328–2375. https://doi.org/10.3390/molecules18022328
  • Kim, J. S., Kwon, C. S., & Son, K. H. (2000). Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Bioscience, Biotechnology, and Biochemistry, 64(11), 2458–2461. https://doi.org/10.1271/bbb.64.2458
  • Klebe, G., & Bohm, H. (1997). Energetic and entropic factors determining binding affinity in protein-ligand complexes. Journal of Receptor and Signal Transduction Research, 17(1–3), 459–473. https://doi.org/10.3109/10799899709036621
  • Krieger, E., Nielsen, J. E., Spronk, C. A. E. M., & Vriend, G. (2006). Fast empirical pKa prediction by Ewald summation. Journal of Molecular Graphics & Modelling, 25(4), 481–486. https://doi.org/10.1016/j.jmgm.2006.02.009
  • Krieger, E., & Vriend, G. (2015). New ways to boost molecular dynamics simulations. Journal of Computational Chemistry, 36(13), 996–1007. https://doi.org/10.1002/jcc.23899
  • Land, H., & Humble, M. S. (2018). YASARA: A tool to obtain structural guidance in biocatalytic investigations. Methods in Molecular Biology (Clifton, NJ), 1685, 43–67. https://doi.org/10.1007/978-1-4939-7366-8_4
  • Lee, H. S. (2005). Cuminaldehyde: aldose reductase and alpha-glucosidase inhibitor derived from Cuminum cyminum L. Seeds. Journal of Agricultural and Food Chemistry, 53(7), 2446–2450. https://doi.org/10.1021/jf048451g
  • Leri, M., Scuto, M., Ontario, M. L., Calabrese, V., Calabrese, E., Bucciantini, M., & Stefani, M. (2020). Healthy effects of plant polyphenols: molecular mechanisms. International Journal of Molecular Sciences, 21(4), 1250. https://doi.org/10.3390/ijms21041250
  • Li, G. B., Yang, L. L., Wang, W. J., Li, L. L., & Yang, S. Y. (2013). ID-Score: a new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. Journal of Chemical Information and Modeling, 53(3), 592–600. https://doi.org/10.1021/ci300493w
  • Lin, H., Chang, T., & Chang, S. (2018). A review of antioxidant and pharmacological properties of phenolic compounds in Acacia confusa. Journal of Traditional and Complementary Medicine, 8(4), 443–450. https://doi.org/10.1016/j.jtcme.2018.05.002
  • Marcucci, M. C., Ferreres, F., Garcı́a-Viguera, C., Bankova, V. S., De Castro, S. L., Dantas, A. P., Valente, P. H. M., & Paulino, N. (2001). Phenolic compounds from Brazilian propolis with pharmacological activities. Journal of Ethnopharmacology, 74(2), 105–112. https://doi.org/10.1016/S0378-8741(00)00326-3
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Mitra, S., & Dash, R. (2018). Structural dynamics and quantum mechanical aspects of shikonin derivatives as CREBBP bromodomain inhibitors. Journal of Molecular Graphics & Modelling, 83, 42–52. https://doi.org/10.1016/j.jmgm.2018.04.014
  • Mukherjee, S., Haubner, J., & Chakraborty, A. (2020). Targeting the inositol pyrophosphate biosynthetic enzymes in metabolic diseases. Molecules, 25(6), 1403. https://doi.org/10.3390/molecules25061403
  • Murugesu, S., Ibrahim, Z., Ahmed, Q.-U., Nik Yusoff, N.-I., Uzir, B.-F., Perumal, V., Abas, F., Saari, K., El-Seedi, H., & Khatib, A. (2018). Characterization of α-glucosidase inhibitors from Clinacanthus nutans Lindau leaves by gas chromatography-mass spectrometry-based metabolomics and molecular docking simulation. Molecules, 23(9), 2402. https://doi.org/10.3390/molecules23092402
  • Nokhala, A., Siddiqui, M. J., Ahmed, Q. U., Ahamad, B. M. S., & Zakaria, Z. A. (2020). Investigation of α-glucosidase inhibitory metabolites from Tetracera scandens leaves by GC–MS metabolite profiling and docking studies. Biomolecules, 10(2), 287. https://doi.org/10.3390/biom10020287
  • Nurdiana, S., Goh, Y. M., Ahmad, H., Dom, S. M., Syimal'ain Azmi, N., Noor Mohamad Zin, N. S., & Ebrahimi, M. (2017). Changes in pancreatic histology, insulin secretion and oxidative status in diabetic rats following treatment with Ficus deltoidea and vitexin. BMC Complementary and Alternative Medicine, 17(1), 290. https://doi.org/10.1186/s12906-017-1762-8
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1-14. https://doi.org/10.1186/1758-2946-3-33
  • Oh, Y. S. (2015). Plant-derived compounds targeting pancreatic beta cells for the treatment of diabetes. Evidence-Based Complementary and Alternative Medicine: eCAM, 2015, 629863. https://doi.org/10.1155/2015/629863
  • Orellana, L. (2019). Large-scale conformational changes and protein function: breaking the in silico Barrier. Frontiers in Molecular Biosciences, 6, 117. https://doi.org/10.3389/fmolb.2019.00117
  • Rahman, N., Muhammad, I., & Nayab, G. (2019). Molecular docking of isolated alkaloids for possible α-glucosidase inhibition. Biomolecules, 9(10), 544. https://doi.org/10.3390/biom9100544
  • Rasouli, H., Hosseini-Ghazvini, S. M.-B., Adibi, H., & Khodarahmi, R. (2017). Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food & Function, 8(5), 1942–1954. https://doi.org/10.1039/c7fo00220c
  • Sorensen, S. H., Noren, O., Sjostrom, H., & Danielsen, E. M. (1982). Amphiphilic pig intestinal microvillus maltase/glucoamylase. Structure and specificity. European Journal of Biochemistry, 126(3), 559–568. https://doi.org/10.1111/j.1432-1033.1982.tb06817.x
  • Sotriffer, C. A. (2006). Molecular dynamics simulations in drug design. In Encyclopedic reference of genomics and proteomics in molecular medicine. Springer. https://doi.org/10.1007/3-540-29623-9_0820
  • Swargiary, A., Mahmud, S., & Saleh, M. A. (2022). Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV2: an in-silico approach to combat COVID-19. Journal of Biomolecular Structure and Dynamics, 40(5),2067-2081. https://doi.org/10.1080/07391102.2020.1835729
  • Teilum, K., Olsen, J. G., & Kragelund, B. B. (2011). Protein stability, flexibility and function. Biochimica et Biophysica Acta, 1814(8), 969–976. https://doi.org/10.1016/j.bbapap.2010.11.005
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An Overview. Medicines, 5(3), 93. https://doi.org/10.3390/medicines5030093
  • Uddin, M. Z., Paul, A., Rakib, A., Sami, S. A., Mahmud, S., Rana, M. S., Hossain, S., Tareq, A. M., Dutta, M., Emran, T. B., & Simal-Gandara, J. (2021). Chemical profiles and pharmacological properties with in-silico studies on Elatostema papillosum Wedd. Molecules, 26(4), 809. https://doi.org/10.3390/molecules26040809
  • Wang, Y., Xiang, L., Wang, C., Tang, C., & He, X. (2013). Antidiabetic and antioxidant effects and phytochemicals of mulberry fruit (Morus alba L.) polyphenol enhanced extract. PloS One, 8(7), e71144. https://doi.org/10.1371/journal.pone.0071144
  • WHO. (2021). Diabetes: key facts. Retrieved June 17, 2021, from https://www.who.int/news-room/fact-sheets/detail/diabetes.
  • Yang, L., Yang, Y.-L., Dong, W.-H., Li, W., Wang, P., Cao, X., Yuan, J.-Z., Chen, H.-Q., Mei, W.-L., & Dai, H.-F. (2019). Sesquiterpenoids and 2-(2-phenylethyl)chromones respectively acting as α-glucosidase and tyrosinase inhibitors from agarwood of an Aquilaria plant. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 853–862. https://doi.org/10.1080/14756366.2019.1576657
  • Yoshikawa, M., Murakami, T., Yashiro, K., & Matsuda, H. (1998). Kotalanol, a potent alpha-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic ayurvedic medicine Salacia reticulata. Chemical & Pharmaceutical Bulletin, 46(8), 1339–1340. https://doi.org/10.1248/cpb.46.1339

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.