111
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

3β-Acetoxy-21α-H-hop-22(29)ene, a novel multitargeted phytocompound against SARS-CoV-2: in silico screening

&
Pages 3884-3891 | Received 21 Mar 2021, Accepted 21 Mar 2022, Published online: 04 Apr 2022

References

  • Archer, K. J., & Cole, A. L. J. (1986). Cuticle, cell wall ultrastructure and disease resistance in Maidenhair fern. New Phytologist, 103(2), 341–348. https://doi.org/10.1111/j.1469-8137.1986.tb00620.x
  • Cui, W., Yang, K., & Yang, H. (2020). Recent Progress in the Drug Development Targeting SARS-CoV-2 Main Protease as Treatment for COVID-19. Frontiers in Molecular Biosciences, 7, 1–10. https://doi.org/10.3389/fmolb.2020.616341
  • Dai, W., Zhang, B., Jiang, X. M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (New York, N.Y.), 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Decker, J. S., Menacho-Melgar, R., & Lynch, M. D. (2020). Low-Cost, Large-Scale Production of the Anti-viral Lectin Griffithsin. Frontiers in Bioengineering and Biotechnology, 8, 1020. https://doi.org/10.3389/fbioe.2020.01020
  • Egloff, M. P., Ferron, F., Campanacci, V., Longhi, S., Rancurel, C., Dutartre, H., Snijder, E. J., Gorbalenya, A. E., Cambillau, C., & Canard, B. (2004). The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proceedings of the National Academy of Sciences of the United States of America, 101(11), 3792–3796. https://doi.org/10.1073/pnas.0307877101
  • FDA. (2020). FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems | FDA [WWW Document]. FDA. Retrieved December 21, 2020, from https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or.
  • Frick, D. N., Virdi, R. S., Vuksanovic, N., Dahal, N., & Silvaggi, N. R. (2020). Molecular basis for ADP-ribose binding to the Mac1 domain of SARS-CoV-2 nsp3. Biochemistry, 59(28), 2608–2615. https://doi.org/10.1021/acs.biochem.0c00309
  • Hevener, K. E., Zhao, W., Ball, D. M., Babaoglu, K., Qi, J., White, S. W., & Lee, R. E. (2009). Validation of molecular docking programs for virtual screening against dihydropteroate synthase. Journal of Chemical Information and Modeling, 49(2), 444–460. https://doi.org/10.1021/ci800293n
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  • Jiang, S. (2020). Don't rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees. Nature, 579(7799), 321. https://doi.org/10.1038/d41586-020-00751-9
  • Joshi, S., Parkar, J., Ansari, A., Vora, A., Talwar, D., Tiwaskar, M., Patil, S., & Barkate, H. (2021). Role of favipiravir in the treatment of COVID-19. International Journal of Infectious Diseases: IJID: Official Publication of the International Society for Infectious Diseases, 102, 501–508. https://doi.org/10.1016/j.ijid.2020.10.069
  • Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2021). Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure and. Dynamics, 39, 1–14. https://doi.org/10.1080/07391102.2020.1753577
  • Khanal, P., Chikhale, R., Dey, Y. N., Pasha, I., Chand, S., Gurav, N., Ayyanar, M., Patil, B. M., & Gurav, S. (2021). Withanolides from Withania somnifera as an immunity booster and their therapeutic options against COVID-19. Journal of Biomolecular Structure and. Dynamics, 18, 1–11. https://doi.org/10.1080/07391102.2020.1869588
  • Kim, Y., Jedrzejczak, R., Maltseva, N. I., Wilamowski, M., Endres, M., Godzik, A., Michalska, K., & Joachimiak, A. (2020). Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2 . Protein Science: A Publication of the Protein Society, 29(7), 1596–1605. https://doi.org/10.1002/pro.3873
  • Liu, C., Zhou, Q., Li, Y., Garner, L. V., Watkins, S. P., Carter, L. J., Smoot, J., Gregg, A. C., Daniels, A. D., Jervey, S., & Albaiu, D. (2020). Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, 6(3), 315–331. https://doi.org/10.1021/acscentsci.0c00272
  • Ma, Y., Tong, X., Xu, X., Li, X., Lou, Z., & Rao, Z. (2010). Structures of the N- and C-terminal domains of MHV-A59 nucleocapsid protein corroborate a conserved RNA-protein binding mechanism in coronavirus. Protein & Cell, 1(7), 688–697. https://doi.org/10.1007/s13238-010-0079-x
  • Magro, G. (2020). SARS-CoV-2 and COVID-19: What are our options? Where should we focus our attention on to find new drugs and strategies? Travel Medicine and Infectious Disease, 37, 101685. https://doi.org/10.1016/j.tmaid.2020.101685
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • O'Boyle, N., Banck, M., James, C., Morley, C., Vandermeersch, T., & Hutchison, G. (2011). Open Babel: An Open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Ogbru, O. (2020). lopinavir & ritonavir (Kaletra): HIV Drug with COVID-19 Coronavirus Potential? [WWW Document]. MedicineNet. Retrieved December 21, 2020, from https://www.medicinenet.com/lopinavir_and_ritonavir/article.htm#can_lopinavir_and_ritonavir_treat_the_covid-19_coronavirus.
  • Oliveira, A. B., Dolabela, M. F., Braga, F. C., Jácome, R. L. R. P., Varotti, F. P., & Póvoa, M. M. (2009). Plant-derived antimalarial agents: New leads and efficient phythomedicines. Part I. alkaloids. Anais da Academia Brasileria de Ciencias, 81, 4. https://doi.org/10.1590/s0001-37652009000400011
  • Pan, C., Chen, Y. G., Ma, X. Y., Jiang, J. H., He, F., & Zhang, Y. (2011). Phytochemical constituents and pharmacological activities of plants from the genus Adiantum: A review. Tropical Journal of Pharmaceutical Research, 10, 681–692. https://doi.org/10.4314/tjpr.v10i5.18
  • Pandey, A. (2020). Reappraisal of Trifluperidol against NSP-3 protein: Potential therapeutic for COVID-19. Future Virology. https://doi.org/10.2217/fvl-2020-0361. Epub ahead of print.
  • Pradeep Kumar, R., Dinesh Babu, K. V., & Evans, D. A. (2019a). Isolation, characterization and mode of action of a larvicidal compound, 22-hydroxyhopane from Adiantum latifolium Lam. against Oryctes rhinoceros Linn. Pestic. Pesticide Biochemistry and Physiology, 153, 161–170. https://doi.org/10.1016/j.pestbp.2018.11.018
  • Pradeep Kumar, R., Evans, D. A., & Dinesh Babu, K. V. (2019b). Characterization of multipotent compounds from Adiantum latifolium leaves by liquid chromatography-electrospray-mass spectroscopy. Analytical Chemistry Letters, 9(5), 682–696. https://doi.org/10.1080/22297928.2019.1674185
  • Pradeep Kumar, R., John, A., Kumar, P., Dinesh Babu, K. V., & Evans, D. A. (2018). Larvicidal efficacy of Adiantobischrysene from Adiantum latifolium against Oryctes rhinoceros through disrupting metamorphosis and impeding microbial mediated digestion. Pest Management Science, 74(8), 1821–1828. https://doi.org/10.1002/ps.4880
  • Pradeep Kumar, R., & Siddique, S. (2021). 22-Hydroxyhopane, a novel multitargeted phytocompound against SARS-CoV-2 from Adiantum latifolium Lam. Natural Product Research, 1–6. https://doi.org/10.1080/14786419.2021.1976177 Epub ahead of print.
  • Prajapat, M., Sarma, P., Shekhar, N., Avti, P., Sinha, S., Kaur, H., Kumar, S., Bhattacharyya, A., Kumar, H., Bansal, S., & Medhi, B. (2020). Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology, 52(1), 56-65. https://doi.org/10.4103/ijp.IJP_115_20
  • Putics, Á., Filipowicz, W., Hall, J., Gorbalenya, A. E., & Ziebuhr, J. (2005). ADP-Ribose-1"-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. Journal of Virology, 79(20), 12721–12731. https://doi.org/10.1128/JVI.79.20.12721-12731.2005
  • Seadawy, M. G., Gad, A. F., Shamel, M., Elharty, B., Mohamed, M. F., Elfiky, A. A., & A. A. (2021). In Vitro: Natural Compounds (Thymol, Carvacrol, Hesperidine, and Thymoquinone) against Sars-Cov2 Strain Isolated from Egypt. Biomedical Journal of Scientific & Technical Research, 34(3), 26750–26757. https://doi.org/10.26717/BJSTR.2021.34.005552
  • Senger, M. R., Evangelista, T. C. S., Dantas, R. F., Santana, M. V., da, S., Gonçalves, L. C. S., Neto, L. R., de, S., Ferreira, S. B., & Silva-Junior, F. P. (2020). COVID-19: Molecular targets, drug repurposing and new avenues for drug discovery. Memórias Do Instituto Oswaldo Cruz, 115, e200254. https://doi.org/10.1590/0074-02760200254
  • Sharma, K., Morla, S., Goyal, A., & Kumar, S. (2020). Computational guided drug repurposing for targeting 2’-O-Ribose Methyltransferase of SARS-CoV-2. Life Sciences, 259, 118169. https://doi.org/10.26434/CHEMRXIV.12111138.V1
  • Shiojima, K., Sasaki, Y., & Ageta, H. (1993). Fern constituents: Triterpenoids isolated from the leaves of Adiantum pedatum. 23-hydroxyfernene, glaucanol A and filicenoic acid. Chemical and Pharmaceutical Bulletin, 41(2), 268–271. https://doi.org/10.1248/cpb.42.45
  • Shivanika, S. D., Ragunathan, K. V., Tiwari, P., A., S., & Brindha Devi, B. D. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 40(2), 585-611. https://doi.org/10.1080/07391102.2020.1815584
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Tsuzuki, K., Ôhashi, A., Arai, Y., Masuda, K., Takano, A., Shiojima, K., Ageta, H., & Cai, S. Q. (2001). Triterpenoids from Adiantum caudatum. Phytochemistry, 58(2), 363–367. https://doi.org/10.1016/S0031-9422(01)00198-4
  • Veeresham, C. (2012). Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology & Research, 3(4), 200-201. https://doi.org/10.4103/2231-4040.104709
  • Wang, H., Oo Khor, T., Shu, L., Su, Z.-Y., Fuentes, F., Lee, J.-H., & Tony Kong, A.-N. (2012). Plants vs. Cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anti-Cancer Agents in Medicinal Chemistry, 12(10), 1281–1305. https://doi.org/10.2174/187152012803833026
  • Watanabe, T., & Kawaoka, Y. (2015). Influenza virus-host interactomes as a basis for antiviral drug development. Current Opinion in Virology, 14, 71–78. https://doi.org/10.1016/j.coviro.2015.08.008
  • Wondmkun, Y. T., & Mohammed, O. A. (2020). A review on novel drug targets and future directions for COVID-19 treatment. Biologics: Targets and Therapy, 14, 77–82. https://doi.org/10.2147/BTT.S266487
  • Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S., & McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (80-.), 367(6483), 1260–1263. https://doi.org/10.1126/science.aax0902
  • Zhang, W., Pei, J., & Lai, L. (2017). Computational Multitarget Drug Design. Journal of Chemical Information and Modeling, 57(3), 403–412. https://doi.org/10.1021/acs.jcim.6b00491
  • Zhang, S. L., Wu, Y. C., Cheng, F., Guo, Z. Y., & Chen, J. F. (2016). Anti-PRRSV effect and mechanism of tetrahydroaltersolanol C in vitro. Journal of Asian Natural Products Research, 18(3), 303–314. https://doi.org/10.1080/10286020.2015.1072516
  • Zheng, X., & Polli, J. (2010). Identification of inhibitor concentrations to efficiently screen and measure inhibition Ki values against solute carrier transporters. European Journal of Pharmaceutical Sciences, 41(1), 43–52. https://doi.org/10.1016/j.ejps.2010.05.013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.