200
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular insights to the binding interactions of APNS containing HIV-protease inhibitors against SARS-CoV-2 Mpro: an in silico approach towards drug repurposing

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3900-3913 | Received 03 Jan 2022, Accepted 23 Mar 2022, Published online: 07 Apr 2022

References

  • Abraham Peele, K., Chandrasai, P., Srihansa, T., Krupanidhi, T., Vijaya Sai, A., John Babu, D., Indira, M., Ranganadha, A. R., & Venkateswarulu, T. C. (2020). Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Informatics in Medicine Unlocked, 19, 100345. https://doi.org/10.1016/j.imu.2020.100345
  • Adejoro, I., Babatunde, D., & Tolufashe, G. (2020). Molecular docking and dynamic simulations of some medicinal plants compounds against SARS-CoV-2: An in silico study. Journal of Taibah University for Science, 14(1), 1563–1570. https://doi.org/10.1080/16583655.2020.1848049
  • Ami, E., Nakahara, K., Sato, A., Nguyen, J.-T., Hidaka, K., Hamada, Y., Nakatani, S., Kimura, T., Hayashi, Y., & Kiso, Y. (2007). Synthesis and antiviral property of allophenylnorstatine-based HIV protease inhibitors incorporating d-cysteine derivatives as P2/P3 moieties. Bioorganic & Medicinal Chemistry Letters, 17(15), 4213–4217. https://doi.org/10.1016/j.bmcl.2007.05.039
  • Baldwin, E. T., Bhat, T. N., Gulnik, S., Liu, B., Topol, I. A., Kiso, Y., Mimoto, T., Mitsuya, H., & Erickson, J. W. (1995). Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine. Structure (London, England : 1993), 3(6), 581–590.
  • Bandyopadhyay, P., & Meher, BR. (2006). Drug resistance of HIV-1 protease against JE-2147: I47V mutation investigated by molecular dynamics simulation. Chemical Biology & Drug Design, 67(2), 155–161. https://doi.org/10.1111/j.1747-0285.2006.00348.x
  • Bayly, C. L., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for determining atom-centered charges: The RESP model. Journal of Physical Chemistry, 97(1), 0269.
  • Bello, M., Martínez-Muñoz, A., & Balbuena-Rebolledo, I. (2020). Identification of saquinavir as a potent inhibitor of dimeric SARS-CoV2 main protease through MM/GBSA. Journal of Molecular Modeling, 26, 340. https://doi.org/10.1007/s00894-020-04600-4
  • Berendsen, H., J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bhatnagar, T., Murhekar, M. V., Soneja, M., Gupta, N., Giri, S., Wig, N., & Gangakhedkar, R. (2020). Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: Protocol for restricted public health emergency use. Indian Journal of Medical Research, 151(2), 184–189. https://doi.org/10.4103/ijmr.IJMR_502_20
  • Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A trial of Lopinavir–Ritonavir in adults hospitalized with severe Covid-19. The New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282
  • Case, D. A., Ben-Shalom, I.Y., Brozell, S.R., Cerutti, D.S., Cheatham, III, T.E., Cruzeiro, V.W.D., Darden, T.A., Duke, R.E., Ghoreishi, D., Gilson, M.K., Gohlke, H., Goetz, A.W., Greene, D., Harris, R., Homeyer, N., Huang, Y., Izadi, S., Kovalenko, A., Kurtzman, T., … & Kollman, P.A. (2018). AMBER 18. San Francisco: University of California.
  • Chen, Y., Yiu, C.-P., & Wong, K.-Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 129. https://doi.org/10.12688/f1000research.22457.2
  • Dash, J. J., Purohit, P., & Meher, B. R. (2020). Binding interactions of JE-2147 (normal vs methylated) to HIV-1 protease: A molecular dynamics simulation study for drug design strategy. In Proceedings of International Conference on Drug Discovery (ICDD) 2020.
  • Dewar, M. J. S., Zoebisch, E. G., Healy, E. F., & Stewart, J. P. (1985). Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107(13), 3902–3909. https://doi.org/10.1021/ja00299a024
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fintelman-Rodrigues, N., Sacramento, C. Q., Lima, C. R., Souza da Silva, F., Ferreira, A. C., Mattos, M., de Freitas, C. S., Soares, V. C., da Silva Gomes Dias, S., Temerozo, J. R., Miranda, A. R., Matos, M. D., Bozza, F. A., Carels, N., Alves, C. R., Siqueira, M. M., Bozza Thiago Moreno, L., & Souza., P. T. (2020). Atazanavir, alone or in combination with Ritonavir, inhibits SARS-CoV-2 replication and pro-inflammatory cytokine production. Antimicrobial Agents and Chemotherapy, 64(10), e00825-20. https://doi.org/10.1128/AAC.00825-20
  • Ghahremanpour, M. M., Tirado-Rives, J., Deshmukh, M., Ippolito, J. A., Zhang, C., Cabeza de Vaca, I., Liosi, M., Anderson, K. S., & Jorgensen, W. L. (2020). Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Medicinal Chemistry Letters, 11(12), 2526–2533. https://doi.org/10.1021/acsmedchemlett.0c00521
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2021). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 39(9), 3213–3224. https://doi.org/10.1080/07391102.2020.1761883
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., & Duan, Y. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582, 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jorgensen, W., Chandrasekhar, J., Madura, J., Impey, R., & Klein, M. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Joshi, T., Bhat, S., Pundir, H., & Chandra, S. (2021). Identification of Berbamine, Oxyacanthine and Rutin from Berberis asiatica as anti-SARS-CoV-2 compounds: An in silico study. Journal of Molecular Graphics & Modelling, 109, 108028. https://doi.org/10.1016/j.jmgm.2021.108028
  • Kageyama, S., Mimoto, T., Murakawa, Y., Nomizu, M., Ford, H., Shirasaka, T., Gulnik, S., Erickson, J., Takada, K., & Hayashi, H. (1993). In vitro anti-human immunodeficiency virus (HIV) activities of transition state mimetic HIV protease inhibitors containing allophenylnorstatine. Antimicrobial Agents and Chemotherapy, 37(4), 810–817. https://doi.org/10.1128/AAC.37.4.810
  • Kavitha, K., Sivakumar, S., & Ramesh, B. (2020). 1,2,4 Triazolo[1,5-a] pyrimidin-7-ones as novel SARS-CoV-2 Main protease inhibitors: In silico screening and molecular dynamics simulation of potential COVID-19 drug candidates. Biophysical Chemistry, 267, 106478. https://doi.org/10.1016/j.bpc.2020.106478
  • Keretsu, S., Bhujbal, S. P., & Cho, S. J. (2020). Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Scientific Reports, 10, 17716. https://doi.org/10.1038/s41598-020-74468-0
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Lim, K. P., Ng, L. F. P., & Liu, D. X. (2000). Identification of a novel cleavage activity of the first papain-like proteinase domain encoded by open reading frame 1a of the coronavirus avian infectious bronchitis virus and characterization of the cleavage products. Journal of Virology, 74(4), 1674–1685. https://doi.org/10.1128/jvi.74.4.1674-1685.2000
  • Lu, I.-L., Mahindroo, N., Liang, P.-H., Peng, Y.-H., Kuo, C.-J., Tsai, K.-C., Hsieh, H.-P., Chao, Y.-S., & Wu, S.-Y. (2006). Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. Journal of Medicinal Chemistry, 49(17), 5154–5161. https://doi.org/10.1021/jm060207o
  • Mahase, E. (2021). Covid-19: Pfizer's paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ (Clinical Research Ed.), 375, n2713. https://doi.org/10.1136/bmj.n2713
  • Maier, J., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Martinez, M. A. (2020). Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrobial Agents and Chemotherapy, 64(5), e00399-20. https://doi.org/10.1128/AAC.00399-20
  • Meher, B. R., Purohit, P., & Dash, J. J. (2020). Probing phytochemicals as prospective antiviral agents against HIV-1 protease through structure-based virtual screening and molecular dynamics simulations. In Proceedings of International Conference on Drug Discovery (ICDD) 2020.
  • Meher, B. R., & Wang, Y. (2012a). Binding of single walled carbon nanotube to WT and mutant HIV-1 proteases: Analysis of flap dynamics and binding mechanism. Journal of Molecular Graphics and Modelling, 38, 430–445. https://doi.org/10.1016/j.jmgm.2012.10.001
  • Meher, B. R., & Wang, Y. (2012b). Interaction of I50V mutant and I50L/A71V double mutant to HIV-1 protease inhibitor TMC114 (Darunavir): Molecular dynamics and free energy studies. The Journal of Physical Chemistry B, 116(6), 1884–1900. https://doi.org/10.1021/jp2074804
  • Meher, B. R., & Wang, Y. (2015). Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: Flap dynamics and binding free energy studies. Journal of Molecular Graphics and Modelling, 56, 60–73. https://doi.org/10.1016/j.jmgm.2014.11.003
  • Miller, B. R., III, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nukoolkarn, V., Lee, V. S., Malaisree, M., Aruksakulwong, O., & Hannongbua, S. (2008). Molecular dynamic simulations analysis of ritonavir and lopinavir as SARS-CoV 3CL(pro) inhibitors. Journal of Theoretical Biology, 254(4), 861–867. https://doi.org/10.1016/j.jtbi.2008.07.030
  • Onufriev, A., Bashford, D., & Case, D. A. (2000). Modification of the generalized Born model suitable for macromolecules. The Journal of Physical Chemistry B, 104(15), 3712–3720. https://doi.org/10.1021/jp994072s
  • Purohit, P., Dash, J. J., & Meher, B. R. (2020). Exploration of phytocompounds as potential anti-dengue agents against DENV NS2B/NS3 protease: Structure-based virtual screening and MD simulation studies. In Proceedings of International Conference on Drug Discovery (ICDD) 2020.
  • Reddy, A. D., Suh, S. B., Ghaffari, R., Singh, N. J., Kim, D.-J., & Han, J. H. (2003). Bioinformatics analysis of SARS proteins and molecular dynamics simulated structure of an alpha-helix motif. Bulletin-Korean Chemical Society, 24, 899–900.
  • Reyaz, S., Tasneem, A., Prakash Rai, G., & Bairagya, H. (2021). Investigation of structural analogs of hydroxychloroquine for SARS-CoV-2 main protease (Mpro): A computational drug discovery study. Journal of Molecular Graphics & Modelling, 109, 108021. https://doi.org/10.1016/j.jmgm.2021.108021
  • Roe, D. R., & Cheatham, T. E., III. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sang, P., Tian, S. H., Meng, Z. H., & Yang, L. Q. (2020). Anti-HIV drug repurposing against SARS-CoV-2. RSC Advances, 10(27), 15775–15783. https://doi.org/10.1039/D0RA01899F
  • Sk, M. F., Roy, R., Jonniya, N. A., Poddar, S., & Kar, P. (2020). Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure and Dynamics, 0, 1–15.
  • Swain, S., Singh, S., Sahoo, A., Hussain, T., & Pati, S. (2021). Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: A molecular docking-simulation base assessment. Journal of Biomolecular Structure and Dynamics. https://doi.org/10.1080/07391102.2021.1885495
  • Ton, A.‐T., Gentile, F., Hsing, M., Ban, F., & Cherkasov, A. (2020). Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds. Molecular Informatics, 39(8), 2000028. https://doi.org/10.1002/minf.202000028
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Wahedi, H. M., Ahmad, S., & Abbasi, S. W. (2020). Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure and Dynamics, 39, 3225–3234. https://doi.org/10.1080/07391102.2020.1762743
  • Wang, J. (2020). Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. Journal of Chemical Information & Modeling, 0, 0–0.
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • WHO (World Health Organization). www.who.int/dg/speeches/detail
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Xia, B., & Kang, X. (2011). Activation and maturation of SARS-CoV main protease. Protein & Cell, 2(4), 282–290. https://doi.org/10.1007/s13238-011-1034-1
  • Yamamoto, N., Yang, R., Yoshinaka, Y., Amari, S., Nakano, T., Cinatl, J., Rabenau, H., Doerr, H. W., Hunsmann, G., Otaka, A., Tamamura, H., Fujii, N., & Yamamoto, N. (2004). HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochemical and Biophysical Research Communications, 318(3), 719–725. https://doi.org/10.1016/j.bbrc.2004.04.083
  • Yoshimura, K., Kato, R., Yusa, K., Kavlick, M., Maroun, V., Nguyen, A., Mimoto, T., Ueno, T., Shintani, M., Falloon, J., Masur, H., Hayashi, H., Erickson, J., & Mitsuya, H. (1999). JE-2147: A dipeptide protease inhibitor (PI) that potently inhibits multi-PI-resistant HIV-1. Proceedings of the National Academy of Sciences, 96(15), 8675–8680. https://doi.org/10.1073/pnas.96.15.8675
  • Zhang, X. W., & Yap, Y. L. (2004). Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorganic & Medicinal Chemistry, 12(10), 2517–2521. https://doi.org/10.1016/j.bmc.2004.03.035
  • Zhou, P. X.-L., Yang, X.-G., Wang, B., Hu, L., Zhang, W., Zhang, H.-R., Si, Y., Zhu, B., Li, C.-L., Huang, H.-D., Chen, J., Chen, Y., Luo, H., Guo, R.-D., Jiang, M.-Q., Liu, Y., Chen, X.-R., Shen, X., Wang, X.-S., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.