271
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Bicyclo-DNA mimics with enhanced protein binding affinities: insights from molecular dynamics simulations

ORCID Icon, & ORCID Icon
Pages 4040-4047 | Received 19 Dec 2021, Accepted 29 Mar 2022, Published online: 09 Apr 2022

References

  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bogdanove, A. J., Bohm, A., Miller, J. C., Morgan, R. D., & Stoddard, B. L. (2018). Engineering altered protein-DNA recognition specificity. Nucleic Acids Research, 46(10), 4845–4871. https://doi.org/10.1093/nar/gky289
  • Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., Cheatham, T. E., III, Darden, T. A., Duke, R. E., Gohlke, H., Goetz, A. W., Gusarov, S., Homeyer, N., Janowski, P., Kaus, J., Kolossváry, I., Kovalenko, A., Lee, T. S., LeGrand, S., Luchko, T., Luo, R., Madej, B., Merz, K. M., Paesani, F., Roe, D. R., Roitberg, A., Sagui, C., Salomon-Ferrer, R., Seabra, G., Simmerling, C. L., Smith, W., Swails, J., Walker, R. C., Wang, J., Wolf, R. M., Wu, X., … Kollman, P. A. (2014). AMBER 14. University of California, San Francisco.
  • Cepeda-Plaza, M., & Peracchi, A. (2020). Insights into DNA catalysis from structural and functional studies of the 8-17 DNAzyme. Organic & Biomolecular Chemistry, 18(9), 1697–1709.
  • Cheatham, T. E., III, Miller, J. L., Fox, T., Darden, T. A., & Kollman, P. A. (1995). Molecular dynamics simulations on solvated biomolecular systems: The particle mesh Ewald method leads to stable trajectories of DNA, RNA and proteins. Journal of the American Chemical Society, 117(14), 4193–4194. https://doi.org/10.1021/ja00119a045
  • Chow, K. U., Boehrer, S., Bojunga, J., Stieler, M., Rummel, M. J., Fauth, F., Schneider, B., Martin, H., Hoelzer, D., Weidmann, E., & Mitrou, P. S. (2002). Induction of apoptosis by cladribine (2-CdA), gemcitabine and other chemotherapeutic drugs on CD34+/CD38+ and CD34+/CD38- hematopoietic progenitor cells: Selective effects of doxorubicin and 2-CdA with protection of immature cells. Leukemia & Lymphoma, 43(2), 377–384. https://doi.org/10.1080/10428190290006198
  • Cieplak, P., Cornell, W. D., Bayly, C., & Kollman, P. A. (1995). Application of the multimolecule and multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and proteins. Journal of Computational Chemistry, 16(11), 1357–1377. https://doi.org/10.1002/jcc.540161106
  • Decherchi, S., & Cavalli, A. (2020). Thermodynamics and kinetics of drug-target binding by molecular simulation. Chemical Reviews, 120(23), 12788–12833. https://doi.org/10.1021/acs.chemrev.0c00534
  • Di, F. D., Dinallo, V., Marafini, I., Figliuzzi, M. M., Romano, B., & Monteleone, G. (2019). Antisense oligonucleotide: Basic concepts and therapeutic application in inflammatory bowel disease. Frontiers in Pharmacology, 10, 305.
  • Durrant, J. D., & McCammon, J. A. (2011). Molecular dynamics simulations and drug discovery. BMC Biology, 9, 71–79. https://doi.org/10.1186/1741-7007-9-71
  • Egeblad, L., Welin, M., Flodin, S., Gräslund, S., Wang, L., Balzarini, J., Eriksson, S., & Nordlund, P. (2012). Pan-pathway based interaction profiling of FDA-approved nucleoside and nucleobase analogs with enzymes of the human nucleotide metabolism. PLoS One, 7(5), e37724. https://doi.org/10.1371/journal.pone.0037724
  • Emehiser, R. G., & Hrdlicka, P. J. (2020). Chimeric γPNA–Invader probes: Using intercalator-functionalized oligonucleotides to enhance the DNA-targeting properties of γPNA. Organic & Biomolecular Chemistry, 18(7), 1359–1368.
  • Enkavi, G., Javanainen, M., Kulig, W., Róg, T., & Vattulainen, I. (2019). Multiscale simulations of biological membranes: The challenge to understand biological phenomena in a living substance. Chemical Reviews, 119(9), 5607–5774. https://doi.org/10.1021/acs.chemrev.8b00538
  • Etheve, L., Martin, J., & Lavery, R. (2016a). Dynamics and recognition within a protein–DNA complex: A molecular dynamics study of the SKN-1/DNA interaction. Nucleic Acids Research, 44(3), 1440–1448. https://doi.org/10.1093/nar/gkv1511
  • Etheve, L., Martin, J., & Lavery, R. (2016b). Protein-DNA interfaces: A molecular dynamics analysis of time-dependent recognition processes for three transcription factors. Nucleic Acids Research, 44(20), 9990–10002.
  • Eyer, L., Nencka, R., De Clercq, E., Seley-Radtke, K., & Růžek, D. (2018). Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antiviral Chemistry & Chemotherapy, 26, 2040206618761299–2040206618761228. https://doi.org/10.1177/2040206618761299
  • Fracchia, F., Del Frate, G., Mancini, G., Rocchia, W., & Barone, V. (2018). Force field parametrization of metal ions from statistical learning techniques. Journal of Chemical Theory and Computation, 14(1), 255–273. https://doi.org/10.1021/acs.jctc.7b00779
  • Fu, H., Chen, H., Blazhynska, M., Goulard, C., de, L. E., Szczepaniak, F., Pavlova, A., Shao, X., Gumbart, J. C., Dehez, F., Roux, B., Cai, W., & Chipot, C. (2022). Accurate determination of protein:ligand standard binding free energies from molecular dynamics simulations. Nature Protocols (ahead of print). https://doi.org/10.1038/s41596-021-00676-1
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gohlke, H., & Case, D. A. (2004). Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. Journal of Computational Chemistry, 25(2), 238–250. https://doi.org/10.1002/jcc.10379
  • Goyal, N., & Narayanaswami, P. (2018). Making sense of antisense oligonucleotides: A narrative review. Muscle & Nerve, 57(3), 356–370.
  • Hamelberg, D., Mongan, J., & McCammon, J. A. (2004). Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. The Journal of Chemical Physics, 120(24), 11919–11929.
  • Hervey, P. S., & Perry, C. M. (2000). Abacavir: A review of its clinical potential in patients with HIV infection. Drugs, 60(2), 447–479. https://doi.org/10.2165/00003495-200060020-00015
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Ivani, I., Dans, P., Noy, A., Pérez, A., Faustino, I., Hospital, A., Walther, J., Andrio, P., Goñi, R., & Balaceanu, A. (2016). Parmbsc1: A refined force field for DNA simulations. Nature Methods, 13(1), 55–58. https://doi.org/10.1038/nmeth.3658
  • Jabs, D. A., & Griffiths, P. D. (2002). Fomivirsen for the treatment of cytomegalovirus retinitis. American Journal of Ophthalmology, 133(4), 552–556.
  • Johnson, T. M., Sison, R., Fallon, J. P., Shukla, P. P., Bhattarai, S., Galang, H., Habeeb, R., & Slim, J. (2016). Clinical experience with dolutegravir/abacavir/lamivudine in HIV-HCV co-infected patients treated with a sofosbuvir-based regimen-safety and efficacy. HIV Clinical Trials, 17(6), 242–245. https://doi.org/10.1080/15284336.2016.1248625
  • Joung, I. S., & Cheatham, T. E. III. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. The Journal of Physical Chemistry. B, 112(30), 9020–9041.
  • Kaminski, G. A., Friesner, R. A., Tirado-Rives, J., & Jorgensen, W. L. (2001). Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B, 105(28), 6474–6487. https://doi.org/10.1021/jp003919d
  • Karplus, M., & McCammon, J. A. (2002). Molecular dynamics simulations of biomolecules. Nature Structural Biology, 9(9), 646–652. https://doi.org/10.1038/nsb0902-646
  • Ke, Y., Jin, H., & Sun, L. (2019). Revealing conformational dynamics of 2'-O-methyl-RNA guanine modified G-quadruplex by replica exchange molecular dynamics. Biochemical and Biophysical Research Communications, 520(1), 14–19. https://doi.org/10.1016/j.bbrc.2019.09.065
  • Khorkova, O., & Wahlestedt, C. (2017). Oligonucleotide therapies for disorders of the nervous system. Nature Biotechnology, 35(3), 249–263.
  • Kleinjung, J., & Fraternali, F. (2014). Design and application of implicit solvent models in biomolecular simulations. Current Opinion in Structural Biology, 25, 126–134. https://doi.org/10.1016/j.sbi.2014.04.003
  • Kundu, S., Malik, S., Ghosh, M., Nandi, S., Pyne, A., Debnath, A., & Sarkar, N. (2021). A comparative study on DMSO-induced modulation of the structural and dynamical properties of model bilayer membranes. Langmuir : The ACS Journal of Surfaces and Colloids, 37(6), 2065–2078.
  • Li, L., Jia, Z., Peng, Y., Chakravorty, A., Sun, L., & Alexov, E. (2017). DelPhiForce web server: Electrostatic forces and energy calculations and visualization. Bioinformatics (Oxford, England), 33(22), 3661–3663. https://doi.org/10.1093/bioinformatics/btx495
  • Lian, Y.-F., Huang, Y.-L., Wang, J.-L., Deng, M.-H., Xia, T.-L., Zeng, M.-S., Chen, M.-S., Wang, H.-B., & Huang, Y.-H. (2018). Anillin is required for tumor growth and regulated by miR-15a/miR-16-1 in HBV-related hepatocellular carcinoma. Aging, 10(8), 1884–1901. https://doi.org/10.18632/aging.101510
  • Lodish, H., Berk, A., Matsudaira, P., Kaiser, C. A., Krieger, M., Scott, M. P., Zipursky, L., & Darnell, J. (2004). Molecular Cell Biology (5th ed.) W. H. Freeman and Company.
  • Lomzov, A., Kupryushkin, M., Shernyukov, A., Nekrasov, M., Dovydenko, I., Stetsenko, D., & Pyshnyi, D. (2019). Diastereomers of a mono-substituted phosphoryl guanidine trideoxyribonucleotide: Isolation and properties. Biochemical and Biophysical Research Communications, 513(4), 807–811. https://doi.org/10.1016/j.bbrc.2019.04.024
  • Longley, D. B., Harkin, D. P., & Johnston, P. G. (2003). 5-Fluorouracil: Mechanisms of action and clinical strategies. Nature Reviews Cancer, 3(5), 330–338. https://doi.org/10.1038/nrc1074
  • Lynch, C. I., Rao, S., & Sansom, M. S. P. (2020). Water in nanopores and biological channels: A molecular simulation perspective. Chemical Reviews, 20, 10298–10335.
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Meli, M., Morra, G., & Colombo, G. (2020). Simple model of protein energetics to identify ab initio folding transitions from all-atom MD simulations of proteins. Journal of Chemical Theory and Computation, 16(9), 5960–5971.
  • Minhas, V., Sun, T., Mirzoev, A., Korolev, N., Lyubartsev, A. P., & Nordenskiöld, L. (2020). Modeling DNA flexibility: Comparison of force fields from atomistic to multiscale levels. The Journal of Physical Chemistry. B, 124(1), 38–49.
  • Mondal, D., Malik, S., Banerjee, P., Kundu, N., Debnath, A., & Sarkar, N. (2020). Modulation of membrane fluidity to control interfacial water structure and dynamics in saturated and unsaturated phospholipid vesicles. Langmuir: The ACS Journal of Surfaces and Colloids, 36(41), 12423–12434. https://doi.org/10.1021/acs.langmuir.0c02736
  • Neidle, S. (2008). Principles of nucleic acid structure (1st ed.) Academic Press.
  • Nguyen, D. T., & Case, D. A. (1985). On finding stationary states on large-molecule potential energy surfaces. The Journal of Physical Chemistry, 89(19), 4020–4026. https://doi.org/10.1021/j100265a018
  • O’Brien, J. J., & Campoli-Richards, D. M. (1989). Acyclovir. An updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs, 37(3), 233–309. https://doi.org/10.2165/00003495-198937030-00002
  • Onufriev, A., Bashford, D., & Case, D. A. (2000). Modification of the generalized born model suitable for macromolecules. The Journal of Physical Chemistry B, 104(15), 3712–3720. [Database] https://doi.org/10.1021/jp994072s
  • Pal, A., & Levy, Y. (2019). Structure, stability and specificity of the binding of ssDNA and ssRNA with proteins. PLoS Computational Biology, 15(4), e1006768.
  • Panecka, J., Mura, C., & Trylska, J. (2011). Molecular dynamics of potential rRNA binders: Single-stranded nucleic acids and some analogues. The Journal of Physical Chemistry B, 15, 532–546.
  • Pant, P., & Aggarwal, L. (2022). Assessing the DNA structural integrity via selective annihilation of Watson-Crick hydrogen bonds: Insights from molecular dynamics simulations. Biophysical Chemistry, 282, 106758.
  • Pant, P., & Fisher, M. (2020a). DNA triplex with conformationally locked sugar disintegrates to duplex: Insights from molecular simulations. Biochemical and Biophysical Research Communications, 532(4), 662–667. https://doi.org/10.1016/j.bbrc.2020.08.097
  • Pant, P., & Fisher, M. (2020b). Marshall's nucleic acid: From double-helical structure to a potent intercalator. Biophysical Chemistry, 269, 106525.
  • Pant, P., & Jayaram, B. (2019). C5' omitted DNA enhances bendability and protein binding. Biochemical and Biophysical Research Communications, 514(3), 979–984. https://doi.org/10.1016/j.bbrc.2019.05.051
  • Pant, P., Pathak, A., & Jayaram, B. (2020). Symmetrization of the backbone of nucleic acids: A molecular dynamics study. Journal of Biomolecular Structure & Dynamics, 38(3), 673–681.
  • Pant, P., Pathak, A., & Jayaram, B. (2021). Symmetric nucleosides as potent purine nucleoside phosphorylase inhibitors. The Journal of Physical Chemistry. B, 125(11), 2856–2862. https://doi.org/10.1021/acs.jpcb.0c10553
  • Pant, P., Shaikh, S. A., & Jayaram, B. (2017). Design and characterization of symmetric nucleic acids via molecular dynamics simulations. Biopolymers, 107(4), e23002. https://doi.org/10.1002/bip.23002
  • Pasi, M., Maddocks, J. H., Beveridge, D. L., Bishop, T. C., Case, D. A., Cheatham, T. E., III, Dans, P. D., Jayaram, B., Lankas, F., Laughton, C., Mitchell, J., Osman, R., Orozco, M., Pérez, A., Petkevičiūtė, D., Spackova, N., Sponer, J., Zakrzewska, K., & Lavery, R. (2014). μABC: A systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA. Nucleic Acids Research, 42(19), 12272–12283.
  • Piana, S., Lindorff-Larsen, K., & Shaw, D. E. (2012). Protein folding kinetics and thermodynamics from atomistic simulation. Proceedings of the National Academy of Sciences of the United States of America, 109(44), 17845–17850. https://doi.org/10.1073/pnas.1201811109
  • Quemener, A. M., Bachelot, L., Forestier, A., Donnou‐Fournet, E., Gilot, D., & Galibert, M. ‐D. (2020). The powerful world of antisense oligonucleotides: From bench to bedside. WIREs RNA, 11(5), e1594. https://doi.org/10.1002/wrna.1594
  • Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., Minorsky, P. V., & Jackson, R. B. (2011). Origins of replication in E. coli and eukaryotes. In Campbell biology (10th ed., p. 321). Pearson.
  • Reilley, M., McCoon, P., Cook, C., Lyne, P., Kurzrock, R., Kim, Y., Woessner, R., Younes, A., Nemunaitis, J., Fowler, N., Curran, M., Liu, Q., Zhou, T., Schmidt, J., Jo, M., Lee, S., Yamashita, M., Hughes, S., Fayad, L., … Hong, D. (2018). STAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: Results of a phase 1b trial. Journal for Immunotherapy of Cancer, 6(1), 119. https://doi.org/10.1186/s40425-018-0436-5
  • Rinaldi, C., & Wood, M. (2018). Antisense oligonucleotides: The next frontier for treatment of neurological disorders. Nature Reviews Neurology, 14(1), 9–21.
  • Roe, D. R., & Cheatham, T. E., III. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095.
  • Rohs, R., Jin, X., West, S. M., Joshi, R., Honig, B., & Mann, R. S. (2010). Origins of specificity in protein-DNA recognition. Annual Review of Biochemistry, 79, 233–269.
  • Rosenberg, J., O'Donnell, P., Balar, A., McGregor, B., Heath, E. a. b., Yu, E., Galsky, M., Hahn, N., Gartner, E., Pinelli, J., Liang, S.-Y., Melhem-Bertrandt, A., & Petrylak, D. (2019). Pivotal trial of Enfortumab Vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. Journal of Clinical Oncology, 37(29), 2592–2600. https://doi.org/10.1200/JCO.19.01140
  • Shao, J., Tanner, S. W., Thompson, N., & Cheatham, T. E. (2007). Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation, 3(6), 2312–2334.
  • Siggers, T., & Gordân, R. (2014). Protein-DNA binding: Complexities and multi-protein codes. Nucleic Acids Research, 42(4), 2099–2111. https://doi.org/10.1093/nar/gkt1112
  • Simpson, D., & Lyseng-Williamson, K. A. (2006). Famciclovir: A review of its use in herpes zoster and genital and orolabial herpes. Drugs, 66(18), 2397–2416. https://doi.org/10.2165/00003495-200666180-00016
  • Soliva, R., Sherer, E. C., Luque, F.-C., Laughton, C. A., & Orozco, M. (2000). Molecular dynamics simulations of PNADNA and PNARNA duplexes in aqueous solution. Journal of the American Chemical Society, 122(25), 5997–6008. https://doi.org/10.1021/ja000259h
  • Sun, L., Xie, X., Weng, W., & Jin, H. (2019). Structural and mechanistic insights into modified G-quadruplex thrombin-binding DNA aptamers. Biochemical and Biophysical Research Communications, 513(3), 753–759. https://doi.org/10.1016/j.bbrc.2019.04.025
  • Takakura, K., Kawamura, A., Torisu, Y., Koido, S., Yahagi, N., & Saruta, M. (2019). Clinical potential of oligonucleotide therapeutics against pancreatic cancer. International Journal of Molecular Sciences, 20(13), 3331. https://doi.org/10.3390/ijms20133331
  • Turner, J. J., Ivanova, G. D., Verbeure, B., Williams, D., Arzumanov, A. A., Abes, S., Lebleu, B., & Gait, M. J. (2005). Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic Acids Research, 33(21), 6837–6849.
  • Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klime-rak, G., Delepine, J. C., Cieplak, P., & Dupradeau, F. Y. R. E. D. (2011). Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Research, 39, W511–W517.
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Zhang, Y., Ge, C., Zhu, C., & Salaita, K. (2014). DNA‐based digital tension probes reveal integrin forces during early cell adhesion. Nature Communications, 5, 5167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.