206
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of phytoconstituents of Tinospora cordifolia against K417N and N501Y mutant spike glycoprotein and main protease of SARS-CoV-2- an in silico study

ORCID Icon, , & ORCID Icon
Pages 4106-4123 | Received 02 Dec 2021, Accepted 02 Apr 2022, Published online: 25 Apr 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Agrahari, A. K., Sneha, P., George Priya Doss, C., Siva, R., & Zayed, H. (2018). A profound computational study to prioritize the disease-causing mutations in PRPS1 gene. Metabolic Brain Disease, 33(2), 589–600. https://doi.org/10.1007/s11011-017-0121-2.
  • Amin, M. L. (2013). P-glycoprotein inhibition for optimal drug delivery. Drug Target Insights, 7, DTI.S12519. https://doi.org/10.4137/DTI.S12519
  • Balkrishna, A., Pokhrel, S., & Varshney, A. (2020). Tinospora cordifolia (Giloy) may curb {COVID}-19 contagion: Tinocordiside disrupts the electrostatic interactions between {ACE}2 and {RBD}. Authorea. https://doi.org/10.22541/au.158707095.53639175
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318.
  • Banerjee, S. K., Jagannath, C., Hunter, R. L., & Dasgupta, A. (2000). Bioavailability of tobramycin after oral delivery in FVB mice using CRL-1605 copolymer, an inhibitor of P-glycoprotein. Life Sciences, 67(16), 2011–2016. https://doi.org/10.1016/S0024-3205(00)00786-4
  • Barlow, A., Landolf, K. M., Barlow, B., Yeung, S., Heavner, J. J., Claassen, C. W., & Heavner, M. S. (2020). Review of emerging pharmacotherapy for the treatment of coronavirus disease 2019. Pharmacotherapy, 40(5), 416–437. https://doi.org/10.1002/phar.2398
  • Berendsen, H., Postma, J., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berman, H., Henrick, K., & Nakamura, H. (2003). Announcing the worldwide Protein Data Bank. Nature Structural & Molecular Biology, 10(12), 980–980. https://doi.org/10.1038/nsb1203-980
  • Bharadwaj, S., Dubey, A., Yadava, U., Mishra, S. K., Kang, S. G., & Dwivedi, V. D. (2021). Exploration of natural compounds with anti-SARS-CoV-2 activity via inhibition of SARS-CoV-2 Mpro. Briefings in Bioinformatics, 22(2), 1361–1377. https://doi.org/10.1093/bib/bbaa382.
  • Bhardwaj, V. K., Singh, R., Das, P., & Purohit, R. (2021a). Evaluation of acridinedione analogs as potential SARS-CoV-2 main protease inhibitors and their comparison with repurposed anti-viral drugs. Computers in Biology and Medicine, 128, 104117. https://doi.org/10.1016/j.compbiomed.2020.104117.
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021b). Bioactive molecules of tea as potential inhibitors for RNA-dependent RNA polymerase of SARS-CoV-2. Frontiers in Medicine, 8. https://doi.org/10.3389/fmed.2021.684020
  • Bhardwaj, V. K., Singh, R., Sharma, J., Rajendran, V., Purohit, R., & Kumar, S. (2021c). Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Journal of Biomolecular Structure & Dynamics, 39(10), 3449–3458. https://doi.org/10.1080/07391102.2020.1766572.
  • Biovia, D. S. (2017). Discovery studio modeling environment.
  • Burckhardt, D., & Stalder, G. A. (1975). Cardiac changes during 2-deoxy-D-glucose test. A study in patients with selective vagotomy and pyloroplasty. Digestion, 12(1), 1–8. https://doi.org/10.1159/000197647.
  • Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. The New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282.
  • Choudhary, P., Gupta, S., Shukla, R., Gupta, A., Pahal, S., & Singh, S. (2021). Regulation of neuronal repair and regeneration through inhibition of oligodendrocyte myelin glycoprotein (OMgp). Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2021.1997820
  • Chowdhury, P. (2021). In silico investigation of phytoconstituents from Indian medicinal herb 'Tinospora cordifolia (giloy)' against SARS-CoV-2 (COVID-19) by molecular dynamics approach. Journal of Biomolecular Structure & Dynamics, 39(17), 6792–6809. https://doi.org/10.1080/07391102.2020.1803968.
  • Corman, V. M., Landt, O., Kaiser, M., Molenkamp, R., Meijer, A., Chu, D., Bleicker, T., Brünink, S., Schneider, J., Schmidt, M. L., Mulders, D., Haagmans, B. L., Van Der Veer, B., Van Den Brink, S., Wijsman, L., Goderski, G., Romette, J. L., Ellis, J., Zambon, M., … Drosten, C. (2020). Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Eurosurveillance, 25(3), 2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045
  • Cucinotta, D., & Vanelli, M. (2020). WHO declares COVID-19 a pandemic. Acta Biomedica Atenei Parmensis, 91, 157–160. https://doi.org/10.23750/abm.v91i1.9397
  • Cui, J., Li, F., & Shi, Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews. Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717.
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Chemical Biology, 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • Dejnirattisai, W., Zhou, D., Supasa, P., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H., Tuekprakhon, A., Nutalai, R., Wang, B., López-Camacho, C., Slon-Campos, J., Walter, T. S., Skelly, D., Costa Clemens, S. A., Naveca, F. G., Nascimento, F., Fernandes da Costa, C., … Screaton, G. R. (2021). Antibody evasion by the P.1 strain of SARS-CoV-2. Cell, 184(11), 2939–2954.e9. https://doi.org/10.1016/j.cell.2021.03.055.
  • Du Toit, A. (2020). Outbreak of a novel coronavirus. Nature Reviews. Microbiology, 18(3), 123–123. https://doi.org/10.1038/s41579-020-0332-0.
  • Gupta, S., Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Shuaib, M., Senapati, S., & Kumar, S. (2021). Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. Journal of Biomolecular Structure & Dynamics, 39(12), 4334–4345. https://doi.org/10.1080/07391102.2020.1776157.
  • Hegyi, A., & Ziebuhr, J. (2002). Conservation of substrate specificities among coronavirus main proteases. The Journal of General Virology, 83(Pt 3), 595–599. https://doi.org/10.1099/0022-1317-83-3-595.
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y.
  • Khan, M. T., Ali, S., Zeb, M. T., Kaushik, A. C., Malik, S. I., & Wei, D.-Q. (2020). Gibbs free energy calculation of mutation in PncA and RpsA associated with pyrazinamide resistance. Frontiers in Molecular Biosciences, 7, 52. https://doi.org/10.3389/fmolb.2020.00052
  • Kirtipal, N., Bharadwaj, S., & Kang, S. G. (2020). From SARS to SARS-CoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses. Infection, Genetics, and Evolution, 85, 104502. https://doi.org/10.1016/j.meegid.2020.104502
  • Kumar, S., Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Senapati, S., Mohd, S. M., & Gupta, S. (2021). Identification of compounds from Curcuma longa with in silico binding potential against SARS-CoV-2 and human host proteins involve in virus entry and pathogenesis. Indian Journal of Pharmaceutical Science, 83(6), 1181-1195. https://doi.org/10.36468/pharmaceutical-sciences.873
  • Kushwaha, P. P., Singh, A. K., Bansal, T., Yadav, A., Prajapati, K. S., Shuaib, M., & Kumar, S. (2021a). Identification of natural inhibitors against SARS-CoV-2 drugable targets using molecular docking, molecular dynamics simulation, and MM-PBSA approach. Frontiers in Cellular and Infection Microbiology, 11, 730288. https://doi.org/10.3389/fcimb.2021.730288
  • Kushwaha, P. P., Singh, A. K., Prajapati, K. S., Shuaib, M., Gupta, S., & Kumar, S. (2021b). Phytochemicals present in Indian ginseng possess potential to inhibit SARS-CoV-2 virulence: A molecular docking and MD simulation study. Microbial Pathogenesis, 157, 104954. https://doi.org/10.1016/j.micpath.2021.104954.
  • Lemkul, J. (2019). From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package. Living Journal of Computational Molecular Science, 1(1), [Article v10]. https://doi.org/10.33011/livecoms.1.1.5068
  • Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nature Reviews Drug Discovery, 19(3), 149–150. https://doi.org/10.1038/d41573-020-00016-0
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997). Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • MacDonald, E. A., Frey, G., Namchuk, M. N., Harrison, S. C., Hinshaw, S. M., & Windsor, I. W. (2021). Recognition of divergent viral substrates by the SARS-CoV-2 main protease. ACS Infectious Diseases, 7(9), 2591–2595. https://doi.org/10.1021/acsinfecdis.1c00237.
  • Malgotra, V., & Sharma, V. (2021). 2-Deoxy-d-glucose inhibits replication of novel coronavirus (SARS-CoV-2) with adverse effects on host cell metabolism. 1–20. https://doi.org/10.20944/preprints202106.0333.v2
  • Minor, R. K., Smith, D. L., Sossong, A. M., Kaushik, S., Poosala, S., Spangler, E. L., Roth, G. S., Lane, M., Allison, D. B., de Cabo, R., Ingram, D. K., & Mattison, J. A. (2010). Chronic ingestion of 2-deoxy-d-glucose induces cardiac vacuolization and increases mortality in rats. Toxicology and Applied Pharmacology, 243(3), 332–339. https://doi.org/10.1016/j.taap.2009.11.025.
  • Mishra, A., Kumar, S., & Pandey, A. K. (2013). Scientific validation of the medicinal efficacy of Tinospora cordifolia. Science World Journal, 2013, 1–8. https://doi.org/10.1155/2013/292934
  • Modak, C., Jha, A., Sharma, N., & Kumar, A. (2021). Chitosan derivatives: A suggestive evaluation for novel inhibitor discovery against wild type and variants of SARS-CoV-2 virus. International Journal of Biological Macromolecules, 187, 492–512. https://doi.org/10.1016/j.ijbiomac.2021.07.144.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256.
  • Naserghandi, A., Allameh, S. F., & Saffarpour, R. (2020). All about COVID-19 in brief. New Microbes and New Infections, 35, 100678. https://doi.org/10.1016/j.nmni.2020.100678.
  • Pahal, S., Gupta, A., Choudhary, P., Chaudhary, A., & Singh, S. (2021). Network pharmacological evaluation of Withania somnifera bioactive phytochemicals for identifying novel potential inhibitors against neurodegenerative disorder. Journal of Biomolecular Structure and Dynamics, 1–12. https://doi.org/10.1080/07391102.2021.1951355
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pereira, G., Da Silva, A., Do Nascimento, S. S., & De Mesquita, J. F. (2019). In silico analysis and molecular dynamics simulation of human superoxide dismutase 3 (SOD3) genetic variants. Journal of Cellular Biochemistry, 120(3), 3583–3598. https://doi.org/10.1002/jcb.27636.
  • Schrödinger, LLC. (2015). The {PyMOL} molecular graphics system, version∼1.8. Schrödinger, LLC.
  • Sharma, J., Kumar Bhardwaj, V., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2021). An in silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933.
  • Shukla, R., Singh, S., Singh, A., & Misra, K. (2021). Two pronged approach for prevention and therapy of COVID-19 (Sars-CoV-2) by a multi-targeted herbal drug, a component of ayurvedic decoction. European Journal of Integrative Medicine, 43, 101268. https://doi.org/10.1016/j.eujim.2020.101268.
  • Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Shuaib, M., Gupta, S., & Kumar, S. (2021a). Identification of FDA approved drugs and nucleoside analogues as potential SARS-CoV-2 A1pp domain inhibitor: An in silico study. Computers in Biology and Medicine, 130, 104185. https://doi.org/10.1016/j.compbiomed.2020.104185
  • Singh, R., Bhardwaj, V. K., & Purohit, R. (2021b). Potential of turmeric-derived compounds against RNA-dependent RNA polymerase of SARS-CoV-2: An in silico approach. Computers in Biology and Medicine, 139, 104965. https://doi.org/10.1016/j.compbiomed.2021.104965.
  • Singh, R., Bhardwaj, V. K., Das, P., & Purohit, R. (2021c). A computational approach for rational discovery of inhibitors for non-structural protein 1 of SARS-CoV-2. Computers in Biology and Medicine, 135, 104555. 104555. https://doi.org/10.1016/j.compbiomed.2021.104555
  • Singh, R., Bhardwaj, V. K., Sharma, J., Kumar, D., & Purohit, R. (2021d). Identification of potential plant bioactive as SARS-CoV-2 Spike protein and human ACE2 fusion inhibitors. Computers in Biology and Medicine, 136, 104631. https://doi.org/10.1016/j.compbiomed.2021.104631.
  • Singh, R., Bhardwaj, V. K., Sharma, J., Purohit, R., & Kumar, S. (2022). In silico evaluation of bioactive compounds from tea as potential SARS-CoV-2 nonstructural protein 16 inhibitors. Journal of Traditional and Complementary Medicine, 12(1), 35–43. https://doi.org/10.1016/j.jtcme.2021.05.005.
  • Sinha, M., Gupta, A., Gupta, S., Singh, P., Pandit, S., Chauhan, S. S., & Parthasarathi, R. (2021e). Analogue discovery of safer alternatives to HCQ and CQ drugs for SAR-CoV-2 by computational design. Computers in Biology and Medicine, 130, 104222. https://doi.org/10.1016/j.compbiomed.2021.104222.
  • Supasa, P., Zhou, D., Dejnirattisai, W., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H., Nutalai, R., Tuekprakhon, A., Wang, B., Paesen, G. C., Slon-Campos, J., López-Camacho, C., Hallis, B., Coombes, N., Bewley, K. R., Charlton, S., Walter, T. S., … Screaton, G. R. (2021). Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell, 184(8), 2201–2211.e7. https://doi.org/10.1016/j.cell.2021.02.033.
  • Tan, D., Chan, A. K., Jüni, P., Tomlinson, G., Daneman, N., Walmsley, S., Muller, M., Fowler, R., Murthy, S., Press, N., Cooper, C., Lee, T., Mazzulli, T., & McGeer, A. (2021). Post-exposure prophylaxis against SARS-CoV-2 in close contacts of confirmed COVID-19 cases (CORIPREV): Study protocol for a cluster-randomized trial. Trials, 22(1), 224. https://doi.org/10.1186/s13063-021-05134-7.
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473.
  • Trott, O., & Olson, A. J. (2009). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Valdes-Tresanco, M. S., Valdes-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool aid to perform end-state free energy calculations with GROMACS files. Journal of Chemical Theory and Computation, 17(10), 6281-6291. https://doi.org/10.5281/zenodo.4569307
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2009). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671-90. https://doi.org/10.1002/jcc.21367
  • Volz, E., Hill, V., McCrone, J. T., Price, A., Jorgensen, D., O’Toole, Á., Southgate, J., Johnson, R., Jackson, B., Nascimento, F. F., Rey, S. M., Nicholls, S. M., Colquhoun, R. M., da Silva Filipe, A., Shepherd, J., Pascall, D. J., Shah, R., Jesudason, N., Li, K., … Neaverson, A. S, COG-UK Consortium (2021). Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell, 184(1), 64–75.e11. https://doi.org/10.1016/j.cell.2020.11.020.
  • Woo, J. S., Lee, C. H., Shim, C. K., & Hwang, S.-J. (2003). Enhanced oral bioavailability of paclitaxel by coadministration of the P-glycoprotein inhibitor KR30031. Pharmaceutical Research, 20(1), 24–30. https://doi.org/10.1023/a:1022286422439.
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3.
  • Yadav, A. R., & Mohite, S. K. (2020). ADME analysis of phytochemical constituents of Psidium guajava. Asian Journal of Research in Chemistry, 13(5), 373–375. https://doi.org/10.5958/0974-4150.2020.00070.X
  • Zhan, X., Dowell, S., Shen, Y., & Lee, D. L. (2020). Chloroquine to fight COVID-19: A consideration of mechanisms and adverse effects? Heliyon, 6(9), e04900. https://doi.org/10.1016/j.heliyon.2020.e04900.
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7.
  • Ziebuhr, J. (2005). The coronavirus replicase. Current Topics in Microbiology and Immunology, 287, 57–94. https://doi.org/10.1007/3-540-26765-4_3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.