474
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Assessing the effect of a series of mutations on the dynamic behavior of phosphite dehydrogenase using molecular docking, molecular dynamics and quantum mechanics/molecular mechanics simulations

, & ORCID Icon
Pages 4154-4166 | Received 12 Oct 2021, Accepted 06 Apr 2022, Published online: 20 Apr 2022

References

  • Achary, V. M. M., Ram, B., Manna, M., Datta, D., Bhatt, A., Reddy, M. K., & Agrawal, P. K. (2017). Phosphite: A novel P fertilizer for weed management and pathogen control. Plant Biotechnology Journal, 15(12), 1493–1508. https://doi.org/10.1111/pbi.12803
  • Adams, N. B. P., Robertson, A. J., Hunter, C. N., Hitchcock, A., & Bisson, C. (2019). Phosphite binding by the HtxB periplasmic binding protein depends on the protonation state of the ligand. Scientific Reports, 9(1), 1–14. https://doi.org/10.1038/s41598-019-46557-2
  • Becke, A. D. (1993). A new mixing of Hartree-Fock and local density-functional theories. The Journal of Chemical Physics, 98(2), 1372–1377. https://doi.org/10.1063/1.464304
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bisson, C., Adams, N. B. P., Stevenson, B., Brindley, A. A., Polyviou, D., Bibby, T. S., Baker, P. J., Hunter, C. N., & Hitchcock, A. (2017). The molecular basis of phosphite and hypophosphite recognition by ABC-transporters. Nature Communications, 8(1), 1746. https://doi.org/10.1038/s41467-017-01226-8
  • Cheng, M. H., & Bahar, I. (2014). Complete mapping of substrate translocation highlights the role of LeuT N-terminal segment in regulating transport cycle. PLoS Computational Biology, 10(10), e1003879. https://doi.org/10.1371/journal.pcbi.1003879 25299050
  • Childers, M. C., & Daggett, V. (2018). Validating Molecular Dynamics Simulations against Experimental Observables in Light of Underlying Conformational Ensembles. The Journal of Physical Chemistry. B, 122(26), 6673–6689. https://doi.org/10.1021/acs.jpcb.8b02144 29864281
  • Cutolo, E., Tosoni, M., Barera, S., Herrera-Estrella, L., Dall’Osto, L., & Bassi, R. (2020). A phosphite dehydrogenase variant with promiscuous access to nicotinamide cofactor pools sustains fast phosphite-dependent growth of transplastomic chlamydomonas reinhardtii. Plants, 9(4), 473. https://doi.org/10.3390/plants9040473
  • Figueroa, I. A., Barnum, T. P., Somasekhar, P. Y., Carlström, C. I., Engelbrektson, A. L., & Coates, J. D. (2018). Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proceedings of the National Academy of Sciences of the United States of America, 115(1), E92–E101. https://doi.org/10.1073/pnas.1715549114
  • Figueroa, I. A., & Coates, J. D. (2017). Microbial phosphite oxidation and its potential role in the global phosphorus and carbon cycles. Advances in Applied Microbiology, 98, 93–117. https://doi.org/10.1016/bs.aambs.2016.09.004
  • Fogle, E. J., & Van Der Donk, W. A. (2007). Pre-steady-state studies of phosphite dehydrogenase demonstrate that hydride transfer is fully rate limiting. Biochemistry, 46(45), 13101–13108. https://doi.org/10.1021/bi701550c
  • Friesner, R. A., & Guallar, V. (2005). Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annual Review of Physical Chemistry, 56, 389–427. https://doi.org/10.1146/annurev.physchem.55.091602.094410
  • Gumbart, J., Khalili-Araghi, F., Sotomayor, M., & Roux, B. (2012). Constant electric field simulations of the membrane potential illustrated with simple systems. Biochimica Et Biophysica Acta, 1818(2), 294–302. https://doi.org/10.1016/j.bbamem.2011.09.030 22001851
  • Howe, G. W., & Van Der Donk, W. A. (2018). 18O kinetic isotope effects reveal an associative transition state for phosphite dehydrogenase catalyzed phosphoryl transfer. Journal of the American Chemical Society, 140(51), 17820–17824. https://doi.org/10.1021/jacs.8b06301
  • Hu, H., & Yang, W. (2009). Development and application of ab initio QM/MM methods for mechanistic simulation of reactions in solution and in enzymes. Theochem, 898(1–3), 17–30. https://doi.org/10.1016/j.theochem.2008.12.025
  • Huang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Hung, J. E., Fogle, E. J., Christman, H. D., Johannes, T. W., Zhao, H., Metcalf, W. W., & Van Der Donk, W. A. (2012). Investigation of the role of Arg301 identified in the X-ray structure of phosphite dehydrogenase. Biochemistry, 51(21), 4254–4262. https://doi.org/10.1021/bi201691w
  • Johannes, T. W., Woodyer, R. D., & Zhao, H. (2007). Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnology and Bioengineering, 96(1), 18–26. https://doi.org/10.1002/bit.21168
  • Kalathiya, U., Padariya, M., & Baginski, M. (2019). Structural, functional, and stability change predictions in human telomerase upon specific point mutations. Scientific Reports, 9(1), 1–13. https://doi.org/10.1038/s41598-019-45206-y
  • Kalia, M., Singh, P. K., Yadav, V. K., Yadav, B. S., Sharma, D., Narvi, S. S., Mani, A., & Agarwal, V. (2017). Structure based virtual screening for identification of potential quorum sensing inhibitors against LasR master regulator in Pseudomonas aeruginosa. Microbial Pathogenesis, 107, 136–143. https://doi.org/10.1016/j.micpath.2017.03.026
  • Khan, M. T., Ali, A., Wang, Q., Irfan, M., Khan, A., Zeb, M. T., Zhang, Y.-J., Chinnasamy, S., & Wei, D.-Q. (2021). Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2-a molecular dynamic study. Journal of Biomolecular Structure & Dynamics, 39(10), 3627–3637. https://doi.org/10.1080/07391102.2020.1769733 32410504
  • Lawan, N., Chasing, P., Santatiwongchai, J., & Muangpil, S. (2019). QM/MM molecular modelling on mutation effect of chorismate synthase enzyme catalysis. Journal of Molecular Graphics & Modelling, 87, 250–256. https://doi.org/10.1016/j.jmgm.2018.12.011
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/physrevb.37.785
  • Lill, M. A., & Danielson, M. L. (2011). Computer-aided drug design platform using PyMOL. Journal of Computer-Aided Molecular Design, 25(1), 13–19. https://doi.org/10.1007/s10822-010-9395-8
  • McLachlan, M. J., Johannes, T. W., & Zhao, H. (2008). Further improvement of phosphite dehydrogenase thermostability by saturation mutagenesis. Biotechnology and Bioengineering, 99(2), 268–274. https://doi.org/10.1002/bit.21546
  • Metcalf, W. W., & Wolfe, R. S. (1998). Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88. Journal of Bacteriology, 180(21), 5547–5558. https://doi.org/10.1128/jb.180.21.5547-5558.1998
  • Ranaghan, K. E., Hung, J. E., Bartlett, G. J., Mooibroek, T. J., Harvey, J. N., Woolfson, D. N., Van Der Donk, W. A., & Mulholland, A. J. (2014). A catalytic role for methionine revealed by a combination of computation and experiments on phosphite dehydrogenase. Chemical Science, 5(6), 2191–2199. https://doi.org/10.1039/C3SC53009D
  • Relyea, H. A., & Van Der Donk, W. A. (2005). Mechanism and applications of phosphite dehydrogenase. Bioorganic Chemistry, 33(3), 171–189. https://doi.org/10.1016/j.bioorg.2005.01.003
  • Relyea, H. A., Vrtis, J. M., Woodyer, R., Rimkus, S. A., & Van Der Donk, W. A. (2005). Inhibition and pH dependence of phosphite dehydrogenase. Biochemistry, 44(17), 6640–6649. https://doi.org/10.1021/bi047640p
  • Rigsby, R. E., & Parker, A. B. (2016). Using the PyMOL application to reinforce visual understanding of protein structure. Biochemistry and Molecular Biology Education : a Bimonthly Publication of the International Union of Biochemistry and Molecular Biology, 44(5), 433–437. https://doi.org/10.1002/bmb.20966 27241834
  • Senn, H. M., & Thiel, W. (2006). QM/MM methods for biological systems. In Markus Reiher (Ed.), Atomistic approaches in modern biology (pp. 173–290). Springer. https://doi.org/10.1007/128_2006_084
  • Stevens, D. R., & Hammes-Schiffer, S. (2020). Examining the mechanism of phosphite dehydrogenase with quantum mechanical/molecular mechanical free energy simulations. Biochemistry, 59(8), 943–954. https://doi.org/10.1021/acs.biochem.9b01089
  • Tiwari, V. (2016, October). In vitro engineering of novel bioactivity in the natural enzymes. Frontiers in Chemistry, 4, 39. https://doi.org/10.3389/fchem.2016.00039
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367 19575467
  • Vrtis, J. M., White, A. K., Metcalf, W. W., & Van der Donk, W. A. (2001). Phosphite dehydrogenase: An unusual phosphoryl transfer reaction. Journal of the American Chemical Society, 123(11), 2672–2673. https://doi.org/10.1021/ja004301k
  • Wang, Y., Zheng, Q., Zhang, J., Xie, M., Zhan, J., & Zhang, H. (2015). How mutations affecting the ligand-receptor interactions: A combined MD and QM/MM calculation on CYP2E1 and its two mutants. Chemical Research in Chinese Universities, 31(6), 1029–1038. https://doi.org/10.1007/s40242-015-5071-9
  • Woodyer, R., Van der Donk, W. A., & Zhao, H. (2003). Relaxing the nicotinamide cofactor specificity of phosphite dehydrogenase by rational design. Biochemistry, 42(40), 11604–11614. https://doi.org/10.1021/bi035018b
  • Woodyer, R., van der Donk, W., & Zhao, H. (2006). Optimizing a biocatalyst for improved NAD(P)H regeneration: Directed evolution of phosphite dehydrogenase. Combinatorial Chemistry & High Throughput Screening, 9(4), 237–245. https://doi.org/10.2174/138620706776843246
  • Woodyer, R., Wheatley, J. L., Relyea, H. A., Rimkus, S., & Van Der Donk, W. A. (2005). Site-directed mutagenesis of active site residues of phosphite dehydrogenase. Biochemistry, 44(12), 4765–4774. https://doi.org/10.1021/bi047868c
  • Yang, Z., Lasker, K., Schneidman-Duhovny, D., Webb, B., Huang, C. C., Pettersen, E. F., Goddard, T. D., Meng, E. C., Sali, A., & Ferrin, T. E. (2012). UCSF Chimera, MODELLER, and IMP: An integrated modeling system. Journal of Structural Biology, 179(3), 269–278. https://doi.org/10.1016/j.jsb.2011.09.006
  • Zou, Y., Zhang, H., Brunzelle, J. S., Johannes, T. W., Woodyer, R., Hung, J. E., Nair, N., Van Der Donk, W. A., Zhao, H., & Nair, S. K. (2012). Crystal structures of phosphite dehydrogenase provide insights into nicotinamide cofactor regeneration. Biochemistry, 51(21), 4263–4270. https://doi.org/10.1021/bi2016926

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.