275
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Targeting EGFR, RSK1, RAF1, PARP2 and LIN28B for several cancer type therapies with newly synthesized pyrazole derivatives via a computational study

ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 4194-4218 | Received 08 Oct 2021, Accepted 06 Apr 2022, Published online: 20 Apr 2022

References

  • Alder, B. J., & Wainwright, T. E. (1959). Studies in molecular dynamics. I. General method. The Journal of Chemical Physics, 31(2), 459–466. https://doi.org/10.1063/1.1730376
  • Ali, S. O., Khan, F. A., Galindo-Campos, M. A., & Yélamos, J. (2016). Understanding specific functions of PARP-2: New lessons for cancer therapy. American Journal of Cancer Research, 6(9), 1842–1863. https://pubmed.ncbi.nlm.nih.gov/27725894.
  • Amé, J.-C., Rolli, V., Schreiber, V., Niedergang, C., Apiou, F., Decker, P., Muller, S., Höger, T., Murcia, J. M., & de Murcia, G. (1999). PARP-2, A novel mammalian DNA damage-dependent poly(ADP-ribose) polymerase. The Journal of Biological Chemistry, 274(25), 17860–17868. https://doi.org/10.1074/jbc.274.25.17860
  • Anjum, R., & Blenis, J. (2008). The RSK family of kinases: Emerging roles in cellular signalling. Nature Reviews. Molecular Cell Biology, 9(10), 747–758. https://doi.org/10.1038/nrm2509
  • Bennani, F. E., Doudach, L., Cherrah, Y., Ramli, Y., Karrouchi, K., Ansar, M., & Faouzi, M. (2020). Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorganic Chemistry, 97, 103470. https://doi.org/10.1016/j.bioorg.2019.103470
  • Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., & Zardecki, C. (2002). The protein data bank. Acta Crystallographica Section D, Biological Crystallography, 58(Pt 6 No 1), 899–907. https://doi.org/10.1107/s0907444902003451
  • Bhat, M., Poojary, B., Kalal, B. S., Gurubasavaraja Swamy, P. M., Kabilan, S., Kumar, V., Shruthi, N., Alias Anand, S. A., & Pai, V. R. (2018). Synthesis and evaluation of thiazolidinone-pyrazole conjugates as anticancer and antimicrobial agents. Future Medicinal Chemistry, 10(9), 1017–1036. https://doi.org/10.4155/fmc-2017-0191
  • Bhullar, K. S., Lagarón, N. O., McGowan, E. M., Parmar, I., Jha, A., Hubbard, B. P., & Rupasinghe, H. (2018). Kinase-targeted cancer therapies: Progress, challenges and future directions. Molecular Cancer, 17(1), 48. https://doi.org/10.1186/s12943-018-0804-2.
  • Bilokapic, S., Suskiewicz, M. J., Ahel, I., & Halic, M. (2020). Bridging of DNA breaks activates PARP2-HPF1 to modify chromatin. Nature, 585(7826), 609–613. https://doi.org/10.1038/s41586-020-2725-7
  • Bistrović, A., Krstulović, L., Harej, A., Grbčić, P., Sedić, M., Koštrun, S., Pavelić, S. K., Bajić, M., & Raić-Malić, S. (2018). Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. European Journal of Medicinal Chemistry, 143, 1616–1634. https://doi.org/10.1016/j.ejmech.2017.10.061
  • Bonfiglio, J. J., Fontana, P., Zhang, Q., Colby, T., Gibbs-Seymour, I., Atanassov, I., Bartlett, E., Zaja, R., Ahel, I., & Matic, I. (2017). Serine ADP-ribosylation depends on HPF1. Molecular Cell, 65(5), 932–940.e6. https://doi.org/10.1016/j.molcel.2017.01.003
  • Brown, T. (2014). ChemDraw. The Science Teacher, 81, 67.
  • Bryan, M. C., Burdick, D. J., Chan, B. K., Chen, Y., Clausen, S., Dotson, J., Eigenbrot, C., Elliott, R., Hanan, E. J., Heald, R., Jackson, P., La, H., Lainchbury, M., Malek, S., Mann, S. E., Purkey, H. E., Schaefer, G., Schmidt, S., Seward, E., … Heffron, T. P. (2016). Pyridones as highly selective, noncovalent inhibitors of T790M double mutants of EGFR. ACS Medicinal Chemistry Letters, 7(1), 100–104. https://doi.org/10.1021/acsmedchemlett.5b00428
  • Chaudhary, M., Kumar, N., Baldi, A., Chandra, R., Arockia Babu, M., & Madan, J. (2020). Chloro and bromo-pyrazole curcumin Knoevenagel condensates augmented anticancer activity against human cervical cancer cells: Design, synthesis, in silico docking and in vitro cytotoxicity analysis. Journal of Biomolecular Structure & Dynamics, 38(1), 200–218. https://doi.org/10.1080/07391102.2019.1578264
  • Chen, C., Bai, L., Cao, F., Wang, S., He, H., Song, M., Chen, H., Liu, Y., Guo, J., Si, Q., Pan, Y., Zhu, R., Chuang, T.-H., Xiang, R., & Luo, Y. (2019). Targeting LIN28B reprograms tumor glucose metabolism and acidic microenvironment to suppress cancer stemness and metastasis. Oncogene, 38(23), 4527–4539. https://doi.org/10.1038/s41388-019-0735-4
  • Chen, J., Fujii, K., Zhang, L., Roberts, T., & Fu, H. (2001). Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7783–7788. https://doi.org/10.1073/pnas.141224398
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 1–13.
  • Daneman, R., & Prat, A. (2015). The blood-brain barrier. Cold Spring Harbor Perspectives in Biology, 7(1), a020412. https://doi.org/10.1101/cshperspect.a020412
  • Dawood, D. H., Nossier, E. S., Ali, M. M., & Mahmoud, A. E. (2020). Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorganic Chemistry, 101, 103916. https://doi.org/10.1016/j.bioorg.2020.103916
  • Dwivedi, J., Sharma, S., Jain, S., & Singh, A. (2018). The synthetic and biological attributes of pyrazole derivatives: A review. Mini Reviews in Medicinal Chemistry, 18(11), 918–947. https://doi.org/10.2174/1389557517666170927160919
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fancelli, D., Moll, J., Varasi, M., Bravo, R., Artico, R., Berta, D., Bindi, S., Cameron, A., Candiani, I., Cappella, P., Carpinelli, P., Croci, W., Forte, B., Giorgini, M. L., Klapwijk, J., Marsiglio, A., Pesenti, E., Rocchetti, M., Roletto, F., … Vianello, P. (2006). 1,4,5,6-Tetrahydropyrrolo[3,4-c]pyrazoles: Identification of a potent aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. Journal of Medicinal Chemistry, 49(24), 7247–7251. https://doi.org/10.1021/jm060897w
  • Filipski, K. K., Mathijssen, R. H., Mikkelsen, T. S., Schinkel, A. H., & Sparreboom, A. (2009). Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clinical Pharmacology and Therapeutics, 86(4), 396–402. https://doi.org/10.1038/clpt.2009.139
  • Fiser, A., Do, R., Webb, B., Pieper, U., & Sali, A. (2003). ModLoop, a web server for modeling of loops in protein structures. http://salilab.org/allosmod/
  • Franses, J. W., Philipp, J., Missios, P., Bhan, I., Liu, A., Yashaswini, C., Tai, E., Zhu, H., Ligorio, M., Nicholson, B., Tassoni, E. M., Desai, N., Kulkarni, A. S., Szabolcs, A., Hong, T. S., Liss, A. S., Fernandez, C., Castillo, Del., Ryan, D. P., … Ting, D. T. (2020). Pancreatic circulating tumor cell profiling identifies LIN28B as a metastasis driver and drug target. Nature Communications, 11(1), 3303. https://doi.org/10.1038/s41467-020-17150-3.
  • Garbe, C., Abusaif, S., & Eigentler, T. K. (2014). Vemurafenib BT - Small molecules in oncology (pp. 215–225, U. M. Martens, Ed.). Springer. https://doi.org/10.1007/978-3-642-54490-3_13.
  • Guedes, I. A., Pereira, F., & Dardenne, L. E. (2018). Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges. Frontiers in Pharmacology, 9, 1089. https://doi.org/10.3389/fphar.2018.01089
  • Guo, W., Hu, Z., Bao, Y., Li, Y., Li, S., Zheng, Q., Lyu, D., Chen, D., Yu, T., Li, Y., Zhu, X., Ding, J., Zhao, Y., He, X., & Huang, S. (2018). A LIN28B tumor-specific transcript in cancer. Cell Reports, 22, 2016–2025. https://doi.org/10.1016/j.celrep.2018.02.002.
  • Hassan, G. S., Abdel Rahman, D. E., Abdelmajeed, E. A., Refaey, R. H., Alaraby Salem, M., & Nissan, Y. M. (2019). New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. European Journal of Medicinal Chemistry, 171, 332–342. https://doi.org/10.1016/j.ejmech.2019.03.052
  • Herbst, R. S., & Bunn, P. A. (2003). Targeting the epidermal growth factor receptor in non-small cell lung cancer. Clinical Cancer Research, 9(16 Pt 1), 5813–5824. http://clincancerres.aacrjournals.org/content/9/16/5813.abstract.
  • Hubatsch, I., Ragnarsson, E., & Artursson, P. (2007). Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nature Protocols, 2(9), 2111–2119. https://doi.org/10.1038/nprot.2007.303
  • Hwang, Y. H., Choi, J. Y., Kim, S., Chung, E. S., Kim, T., Koh, S. S., Lee, B., Bae, S. H., Kim, J., & Park, Y. M. (2004). Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatology Research, 29(2), 113–121. https://doi.org/10.1016/j.hepres.2004.02.009
  • Ikuta, M., Kornienko, M., Byrne, N., Reid, J. C., Mizuarai, S., Kotani, H., & Munshi, S. K. (2007). Crystal structures of the N-terminal kinase domain of human RSK1 bound to three different ligands: Implications for the design of RSK1 specific inhibitors. Protein Science, 16(12), 2626–2635. https://doi.org/10.1110/ps.073123707
  • Iqbal, J., & Hussain, M. M. (2009). Intestinal lipid absorption. American Journal of Physiology. Endocrinology and Metabolism, 296(6), E1183–E1194. https://doi.org/10.1152/ajpendo.90899.2008
  • Jafari, S., Farsani, F. M., Ganji, M., & Ganjalikhany, M. R. (2021). The functional regulatory details of ERK2 in complex with RSK1: An in silico insight. The Royal Society of Chemistry, 11(19), 11048-11056. https://doi.org/10.1039/d1ra01020d.
  • Jin, G., Yan, M., Liu, K., Yao, K., Chen, H., Zhang, C., Yi, Y., Reddy, K., Gorja, D. R., Laster, K. V., Guo, Z., & Dong, Z. (2020). Discovery of a novel dual-target inhibitor against RSK1 and MSK2 to suppress growth of human colon cancer. Oncogene, 39(43), 6733–6746. https://doi.org/10.1038/s41388-020-01467-w
  • Jin, G., Yao, K., Guo, Z., Zhao, Z., Liu, K., Liu, F., Chen, H., Gorja, D. R., Reddy, K., Bode, A. M., Dong, Z., & Dong, Z. (2017). APIO-EE-9 is a novel Aurora A and B antagonist that suppresses esophageal cancer growth in a PDX mouse model. Oncotarget, 8(32), 53387–53404. https://doi.org/10.18632/oncotarget.18508
  • Karrouchi, K., Ansar, M., Radi, S., Saadi, M., & El Ammari, L. (2015). Crystal structure of N'-di-phenyl-methyl-idene-5-methyl-1H-pyrazole-3-carbo-hydrazide. Acta Crystallographica. Section E, Crystallographic Communications, 71(Pt 11), 890–891. https://doi.org/10.1107/S2056989015020071
  • Karrouchi, K., Brandán, S. A., Hassan, M., Bougrin, K., Radi, S., Ferbinteanu, M., Garcia, Y., & Ansar, M. (2021a). Synthesis, X-ray, spectroscopy, molecular docking and DFT calculations of (E)-N’-(2,4-dichlorobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1228, 129714. https://doi.org/10.1016/j.molstruc.2020.129714
  • Karrouchi, K., Brandán, S. A., Sert, Y., El Karbane, M., Radi, S., Ferbinteanu, M., Garcia, Y., & Ansar, M. (2021b). Synthesis, structural, molecular docking and spectroscopic studies of (E)-N’-(4-methoxybenzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1225, 129072. https://doi.org/10.1016/j.molstruc.2020.129072
  • Karrouchi, K., Brandán, S. A., Sert, Y., El-marzouqi, H., Radi, S., Ferbinteanu, M., Faouzi, M., Garcia, Y., & Ansar, M. (2020). Synthesis, X-ray structure, vibrational spectroscopy, DFT, biological evaluation and molecular docking studies of (E)-N’-(4-(dimethylamino)benzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1219, 128541. https://doi.org/10.1016/j.molstruc.2020.128541
  • Karrouchi, K., Chemlal, L., Taoufik, J., Cherrah, Y., Radi, S., El Abbes Faouzi, M., & Ansar, M. (2016a). Synthesis, antioxidant and analgesic activities of Schiff bases of 4-amino-1,2,4-triazole derivatives containing a pyrazole moiety. Annales Pharmaceutiques Francaises, 74(6), 431–438. https://doi.org/10.1016/j.pharma.2016.03.005
  • Karrouchi, K., Fettach, S., Anouar, E. H., Tüzün, B., Radi, S., Alharthi, A. I., Ghabbour, H. A., Mabkhot, Y. N., Faouzi, M. E. A., Ansar, M., & Garcia, Y. (2021c). Synthesis, crystal structure, DFT, α-glucosidase and α-amylase inhibition and molecular docking studies of (E)-N'-(4-chlorobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1245(2021), 131067. https://doi.org/10.1016/j.molstruc.2021.131067
  • Karrouchi, K., Fettach, S., Radi, S., bekkaye Yousfi, E., Taoufik, J., Mabkhot, Y. N., Alterary, S., Faouzi, M., & Ansar, M. (2019). Synthesis, characterization, free-radical scavenging capacity and antioxidant activity of novel series of hydrazone, 1,3,4-oxadiazole and 1,2,4-triazole derived from 3,5-dimethyl-1H-pyrazole. Letters in Drug Design & Discovery, 16(7), 712–720. https://doi.org/10.2174/1570180815666180516103050
  • Karrouchi, K., Radi, S., Ansar, M., Taoufik, J., Ghabbour, H. A., & Mabkhot, Y. N. (2016b). Crystal structure of N′-(4-(dimethylamino) benzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide, C19H19N5O. Zeitschrift Für Kristallographie - New Crystal Structures, 231(3), 883–886. https://doi.org/10.1515/ncrs-2015-0303
  • Karrouchi, K., Radi, S., Ansar, M., Taoufik, J., Ghabbour, H. A., & Mabkhot, Y. N. (2016c). Crystal structure of N′-(4-methoxybenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide, C18H16N4O2. Zeitschrift Für Kristallographie - New Crystal Structures, 231(3), 835–837. https://doi.org/10.1515/ncrs-2015-0286
  • Karrouchi, K., Radi, S., Ansar, M., Taoufik, J., Ghabbour, H. A., & Mabkhot, Y. N. (2016d). Crystal structure of N′-(4-nitrobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide, C17H13N5O3. Zeitschrift Für Kristallographie - New Crystal Structures, 231(3), 839–841. https://doi.org/10.1515/ncrs-2015-0287
  • Karrouchi, K., Radi, S., Ramli, Y., Taoufik, J., Mabkhot, Y. N., Al-aizari, F. A., & Ansar, M. (2018). Synthesis and pharmacological activities of pyrazole derivatives: A review. Molecules, 23(1), 134. https://doi.org/10.3390/molecules23010134
  • Karrouchi, K., Yousfi, E. B., Sebbar, N. K., Ramli, Y., Taoufik, J., Ouzidan, Y., Ansar, M., Mabkhot, Y. N., Ghabbour, H. A., & Radi, S. (2017). New pyrazole-hydrazone derivatives: X-ray analysis, molecular structure investigation via density functional theory (DFT) and their high in-situ catecholase activity. International Journal of Molecular Sciences, 18(11), 2215. https://doi.org/10.3390/ijms18112215
  • Keating, G. M. (2016). Afatinib: A review in advanced non-small cell lung cancer. Targeted Oncology, 11(6), 825–835. https://doi.org/10.1007/s11523-016-0465-2
  • Klotz, D. M., & Wimberger, P. (2020). Overcoming PARP inhibitor resistance in ovarian cancer: What are the most promising strategies? Archives of Gynecology and Obstetrics, 302(5), 1087–1102. https://doi.org/10.1007/s00404-020-05677-1
  • Lei, J., Zhong, J., Hao, J., Liu, Z., Zhang, P., Wu, L., Yan, L., Zhu, J., Zeng, Y., Li, B., Wen, T., & Wang, W. (2016). Hepatocellular carcinoma cases with high levels of c-Raf-1 expression may benefit from postoperative adjuvant sorafenib after hepatic resection even with high risk of recurrence. Oncotarget, 7(27), 42598–42607. https://doi.org/10.18632/oncotarget.3799
  • Lin, X., Shen, J., Peng, D., He, X., Xu, C., Chen, X., Tanyi, J. L., Montone, K., Fan, Y., Huang, Q., Zhang, L., & Zhong, X. (2018). RNA-binding protein LIN28B inhibits apoptosis through regulation of the AKT2/FOXO3A/BIM axis in ovarian cancer cells. Signal Transduction and Targeted Therapy, 3, 23. https://doi.org/10.1038/s41392-018-0026-5.
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lovnicki, J., Gan, Y., Feng, T., Li, Y., Xie, N., Ho, C.-H., Lee, A. R., Chen, X., Nappi, L., Han, B., Fazli, L., Huang, J., Gleave, M. E., & Dong, X. (2020). LIN28B promotes the development of neuroendocrine prostate cancer. The Journal of Clinical Investigation, 130(10), 5338–5348. https://doi.org/10.1172/JCI135373
  • Luzina, E. L., & Popov, A. V. (2009). Synthesis and anticancer activity of N-bis(trifluoromethyl)alkyl-N'-thiazolyl and N-bis(trifluoromethyl)alkyl-N'-benzothiazolyl ureas. European Journal of Medicinal Chemistry, 44(12), 4944–4953. https://doi.org/10.1016/j.ejmech.2009.08.007
  • Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Haserlat, S. M., Supko, J. G., Haluska, F. G., Louis, D. N., Christiani, D. C., Settleman, J., & Haber, D. A. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. New England Journal of Medicine, 350(21), 2129–2139. https://doi.org/10.1056/NEJMoa040938
  • Lynch, T., & Price, A. (2007). The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. American Family Physician, 76(3), 391–396.
  • Ma, L., Zhao, Q., Chen, W., & Zhang, Y. (2018). Oncogene Lin28B increases chemosensitivity of colon cancer cells in a let-7-independent manner. Oncology Letters, 15(5), 6975–6981. https://doi.org/10.3892/ol.2018.8250
  • Maemondo, M., Inoue, A., Kobayashi, K., Sugawara, S., Oizumi, S., Isobe, H., Gemma, A., Harada, M., Yoshizawa, H., Kinoshita, I., Fujita, Y., Okinaga, S., Hirano, H., Yoshimori, K., Harada, T., Ogura, T., Ando, M., Miyazawa, H., Tanaka, T., … Nukiwa, T. (2010). Gefitinib or chemotherapy for non–small-cell lung cancer with mutated EGFR. New England Journal of Medicine, 362(25), 2380–2388. https://doi.org/10.1056/NEJMoa0909530
  • Mahajan, P., Suri, N., Mehra, R., Gupta, M., Kumar, A., Singh, S. K., & Nargotra, A. (2017). Discovery of novel small molecule EGFR inhibitory leads by structure and ligand-based virtual screening. Medicinal Chemistry Research, 26(1), 74–92. https://doi.org/10.1007/s00044-016-1728-2
  • Markad, S. B., & Argade, N. P. (2014). Diversity oriented convergent access for collective total synthesis of bioactive multifunctional carbazole alkaloids: Synthesis of carbazomycin A, carbazomycin B, hyellazole, chlorohyellazole, and clausenaline D. Organic Letters, 16(20), 5470–5473. https://doi.org/10.1021/ol502721r
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé–Hoover chains: The canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Murai, J., Huang, S. N., Das, B. B., Renaud, A., Zhang, Y., Doroshow, J. H., Ji, J., Takeda, S., & Pommier, Y. (2012). Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Research, 72(21), 5588–5599. https://doi.org/10.1158/0008-5472.CAN-12-2753
  • Naito, H., Ohsuki, S., Sugimori, M., Atsumi, R., Minami, M., Nakamura, Y., Ishii, M., Hirotani, K., Kumazawa, E., & Ejima, A. (2002). Synthesis and antitumor activity of novel pyrimidinyl pyrazole derivatives. II. Optimization of the phenylpiperazine moiety of 1-[5-methyl-1-(2-pyrimidinyl)-4-pyrazolyl]-3-phenylpiperazinyl-1-trans-propenes. Chemical & Pharmaceutical Bulletin, 50(4), 453–462. https://doi.org/10.1248/cpb.50.453
  • Nawaz, F., Alam, O., Perwez, A., Rizvi, M. A., Naim, M. J., Siddiqui, N., ul Firdaus, J., Rahman, S., Jha, M., & Sheikh, A. A. (2021). Design, synthesis, molecular docking, and anticancer evaluation of pyrazole linked pyrazoline derivatives with carbothioamide tail as EGFR kinase inhibitors. Anti-Cancer Agents in Medicinal Chemistry, 21(1), 42–60. https://doi.org/10.2174/1871520620666200727093613
  • Nitulescu, G. M., Draghici, C., Olaru, O. T., Matei, L., Ioana, A., Dragu, L. D., & Bleotu, C. (2015). Synthesis and apoptotic activity of new pyrazole derivatives in cancer cell lines. Bioorganic & Medicinal Chemistry, 23(17), 5799–5808. https://doi.org/10.1016/j.bmc.2015.07.010
  • Perez-Soler, R. (2004). The role of erlotinib (Tarceva, OSI 774) in the treatment of non-small cell lung cancer. Clinical Cancer Research, 10(12 Pt 2), 4238s–4240s. https://doi.org/10.1158/1078-0432.CCR-040017
  • Pillai, R. R., Karrouchi, K., Fettach, S., Armaković, S., Armaković, S. J., Brik, Y., Taoufik, J., Radi, S., El Abbes Faouzi, M., & Ansar, M. (2019). Synthesis, spectroscopic characterization, reactive properties by DFT calculations, molecular dynamics simulations and biological evaluation of Schiff bases tethered 1,2,4-triazole and pyrazole rings. Journal of Molecular Structure, 1177, 47–54. https://doi.org/10.1016/j.molstruc.2018.09.037
  • Pires, D. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Piskounova, E., Polytarchou, C., Thornton, J. E., LaPierre, R. J., Pothoulakis, C., Hagan, J. P., Iliopoulos, D., & Gregory, R. I. (2011). Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell, 147(5), 1066–1079. https://doi.org/10.1016/j.cell.2011.10.039
  • Potts, R. O., & Guy, R. H. (1992). Predicting skin permeability. Pharmaceutical Research, 09(5), 663–669. https://doi.org/10.1023/A:1015810312465
  • Ramalingam, S. S., Vansteenkiste, J., Planchard, D., Cho, B. C., Gray, J. E., Ohe, Y., Zhou, C., Reungwetwattana, T., Cheng, Y., Chewaskulyong, B., Shah, R., Cobo, M., Lee, K. H., Cheema, P., Tiseo, M., John, T., Lin, M.-C., Imamura, F., Kurata, T., … Soria, J.-C., FLAURA Investigators. (2020). Overall survival with osimertinib in untreated, EGFR-mutated advanced NSCLC. The New England Journal of Medicine, 382(1), 41–50. https://doi.org/10.1056/NEJMoa1913662
  • Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C., & De Clercq, E. (2008). Design and synthesis of 2-(2,6-dibromophenyl)-3-heteroaryl-1,3-thiazolidin-4-ones as anti-HIV agents. European Journal of Medicinal Chemistry, 43(12), 2800–2806. https://doi.org/10.1016/j.ejmech.2007.12.015
  • Ren, S.-Z., Wang, Z.-C., Zhu, D., Zhu, X.-H., Shen, F.-Q., Wu, S.-Y., Chen, J.-J., Xu, C., & Zhu, H.-L. (2018). Design, synthesis and biological evaluation of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy. European Journal of Medicinal Chemistry, 157, 909–924. https://doi.org/10.1016/j.ejmech.2018.08.048
  • Richards, S. A., Fu, J., Romanelli, A., Shimamura, A., & Blenis, J. (1999). Ribosomal S6 kinase 1 (RSK1) activation requires signals dependent on and independent of the MAP kinase ERK. Current Biology: CB, 9(15), 810–820. https://doi.org/10.1016/S0960-9822(99)80364-9
  • Romeo, Y., Zhang, X., & Roux, P. P. (2012). Regulation and function of the RSK family of protein kinases. The Biochemical Journal, 441(2), 553–569. https://doi.org/10.1042/BJ20110289
  • Roos, M., Pradère, U., Ngondo, R. P., Behera, A., Allegrini, S., Civenni, G., Zagalak, J. A., Marchand, J.-R., Menzi, M., Towbin, H., Scheuermann, J., Neri, D., Caflisch, A., Catapano, C. V., Ciaudo, C., & Hall, J. (2016). A small-molecule inhibitor of Lin28. ACS Chemical Biology, 11(10), 2773–2781. https://doi.org/10.1021/acschembio.6b00232
  • Saleh, N. M., El-Gazzar, M. G., Aly, H. M., & Othman, R. A. (2019). Novel anticancer fused pyrazole derivatives as EGFR and VEGFR-2 dual TK inhibitors. Frontiers in Chemistry, 7, 917. https://doi.org/10.3389/fchem.2019.00917
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626
  • Santarius, T., Shipley, J., Brewer, D., Stratton, M. R., & Cooper, C. S. (2010). A census of amplified and overexpressed human cancer genes. Nature Reviews. Cancer, 10(1), 59–64. https://doi.org/10.1038/nrc2771
  • Satoh, A., Nagatomi, Y., Hirata, Y., Ito, S., Suzuki, G., Kimura, T., Maehara, S., Hikichi, H., Satow, A., Hata, M., Ohta, H., & Kawamoto, H. (2009). Discovery and in vitro and in vivo profiles of 4-fluoro-N-[4-[6-(isopropylamino)pyrimidin-4-yl]-1,3-thiazol-2-yl]-N-methylbenzamide as novel class of an orally active metabotropic glutamate receptor 1 (mGluR1) antagonist. Bioorganic & Medicinal Chemistry Letters, 19(18), 5464–5468. https://doi.org/10.1016/j.bmcl.2009.07.097
  • Sayed, A. R., Gomha, S. M., Abdelrazek, F. M., Farghaly, M. S., Hassan, S. A., & Metz, P. (2019). Design, efficient synthesis and molecular docking of some novel thiazolyl-pyrazole derivatives as anticancer agents. BMC Chemistry, 13(1), 116. https://doi.org/10.1186/s13065-019-0632-5.
  • Schrödinger. (2017). M.-D.I. Tools. Schrödinger.
  • Schuler, M., Wu, Y.-L., Hirsh, V., O’Byrne, K., Yamamoto, N., Mok, T., Popat, S., Sequist, L. V., Massey, D., Zazulina, V., & Yang, J. C.-H. (2016). First-line afatinib versus chemotherapy in patients with non-small cell lung cancer and common epidermal growth factor receptor gene mutations and brain metastases. Journal of Thoracic Oncology, 11, 380–390. https://doi.org/10.1016/j.jtho.2015.11.014.
  • Shamroukh, A. H., Rashad, A. E., Abdel-Megeid, R. E., Ali, H. S., & Ali, M. M. (2014). Some pyrazole and pyrazolo[3,4-d]pyrimidine derivatives: Synthesis and anticancer evaluation. Archiv Der Pharmazie, 347(8), 559–565. https://doi.org/10.1002/ardp.201400064
  • Sharma, C., & Mohanty, D. (2017). Molecular dynamics simulations for deciphering the structural basis of recognition of Pre-let-7 miRNAs by LIN28. Biochemistry, 56(5), 723–735. https://doi.org/10.1021/acs.biochem.6b00837
  • Sharma, V. K., Nandekar, P. P., Sangamwar, A., Pérez-Sánchez, H., & Agarwal, S. M. (2016). Structure guided design and binding analysis of EGFR inhibiting analogues of erlotinib and AEE788 using ensemble docking, molecular dynamics and MM-GBSA. RSC Advances, 6(70), 65725–65735. https://doi.org/10.1039/C6RA08517B
  • Sharom, F. J. (2011). The P-glycoprotein multidrug transporter. Essays in Biochemistry, 50(1), 161–178. https://doi.org/10.1042/bse0500161
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654
  • Singh, N., Bhati, S. K., & Kumar, A. (2008). Thiazolyl/oxazolyl formazanyl indoles as potent anti-inflammatory agents. European Journal of Medicinal Chemistry, 43(11), 2597–2609. https://doi.org/10.1016/j.ejmech.2007.12.024
  • Smith, D. A., & Jones, B. C. (1992). Speculations on the substrate structure-activity relationship (SSAR) of cytochrome P450 enzymes. Biochemical Pharmacology, 44(11), 2089–2098. https://doi.org/10.1016/0006-2952(92)90333-E
  • Somer, F. L. (2004). Molecular modelling for beginners (Alan Hinchliffe). Journal of Chemical Education, 81(11), 1573. https://doi.org/10.1021/ed081p1573
  • Soria, J.-C., Ohe, Y., Vansteenkiste, J., Reungwetwattana, T., Chewaskulyong, B., Lee, K. H., Dechaphunkul, A., Imamura, F., Nogami, N., Kurata, T., Okamoto, I., Zhou, C., Cho, B. C., Cheng, Y., Cho, E. K., Voon, P. J., Planchard, D., Su, W.-C., Gray, J. E., … Ramalingam, S. S. (2018). Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. New England Journal of Medicine, 378(2), 113–125. https://doi.org/10.1056/NEJMoa1713137
  • Srivalli, K., & Lakshmi, P. K. (2012). Overview of P-glycoprotein inhibitors: A rational outlook. Brazilian Journal of Pharmaceutical Sciences, 48(3), 353–367. https://doi.org/10.1590/S1984-82502012000300002
  • Suskiewicz, M. J., Zobel, F., Ogden, T., Fontana, P., Ariza, A., Yang, J.-C., Zhu, K., Bracken, L., Hawthorne, W. J., Ahel, D., Neuhaus, D., & Ahel, I. (2020). HPF1 completes the PARP active site for DNA damage-induced ADP-ribosylation. Nature, 579(7800), 598–602. https://doi.org/10.1038/s41586-020-2013-6
  • Thomas, R., & Weihua, Z. (2019). Rethink of EGFR in cancer with its kinase independent function on board. Frontiers in Oncology, 9, 800. https://doi.org/10.3389/fonc.2019.00800
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tuckerman, M., Berne, B. J., & Martyna, G. J. (1992). Reversible multiple time scale molecular dynamics. The Journal of Chemical Physics, 97(3), 1990–2001. https://doi.org/10.1063/1.463137
  • Tumbrink, H. L., Heimsoeth, A., & Sos, M. L. (2021). The next tier of EGFR resistance mutations in lung cancer. Oncogene, 40(1), 1–11. https://doi.org/10.1038/s41388-020-01510-w
  • Tüzün, B. (2020). Investi̇gati̇on of pyrazoly derivatives schi̇ff base li̇gands and thei̇r metal complexes used as anti-cancer drug. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 227, 117663. https://doi.org/10.1016/j.saa.2019.117663
  • Umar, A. B., Uzairu, A., Shallangwa, G. A., & Uba, S. (2020). In silico evaluation of some 4-(quinolin-2-yl) pyrimidin-2-amine derivatives as potent V600E-BRAF inhibitors with pharmacokinetics ADMET and drug-likeness predictions. Future Journal of Pharmaceutical Sciences, 6, 1–10.
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Venugopal, P. P., Shilpa, M., & Chakraborty, D. (2021). Theoretical insights into molecular mechanism and energy criteria of PARP‐2 enzyme inhibition by benzimidazole analogues. Proteins: Structure, Function, and Bioinformatics, 89(8), 988–1004. https://doi.org/10.1002/prot.26077
  • Verma, N., Rai, A. K., Kaushik, V., Brünnert, D., Chahar, K. R., Pandey, J., & Goyal, P. (2016). Identification of gefitinib off-targets using a structure-based systems biology approach; their validation with reverse docking and retrospective data mining. Scientific Reports, 6, 1–12.
  • Wang, G., Liu, W., Peng, Z., Huang, Y., Gong, Z., & Li, Y. (2020). Design, synthesis, molecular modeling, and biological evaluation of pyrazole-naphthalene derivatives as potential anticancer agents on MCF-7 breast cancer cells by inhibiting tubulin polymerization. Bioorganic Chemistry, 103, 104141. https://doi.org/10.1016/j.bioorg.2020.104141
  • Wang, L., Rowe, R. G., Jaimes, A., Yu, C., Nam, Y., Pearson, D. S., Zhang, J., Xie, X., Marion, W., Heffron, G. J., Daley, G. Q., & Sliz, P. (2018). Small-molecule inhibitors disrupt let-7 oligouridylation and release the selective blockade of let-7 processing by LIN28. Cell Reports, 23(10), 3091–3101. https://doi.org/10.1016/j.celrep.2018.04.116
  • Wang, R., Cong, Y., Li, M., Bao, J., Qi, Y., & Zhang, J. (2020). Molecular mechanism of selective binding of NMS-P118 to PARP-1 and PARP-2: A computational perspective. Frontiers in Molecular Biosciences, 7, 50. https://doi.org/10.3389/fmolb.2020.00050
  • Wee, P., & Wang, Z. (2017). Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel), 9(5), 52. https://doi.org/10.3390/cancers9050052
  • Xiao, D., He, F., Peng, D., Zou, M., Peng, J., Liu, P., Liu, Y., & Liu, Z. (2018). Synthesis and anticancer activity of 9-O-pyrazole alkyl substituted berberine derivatives. Anti-Cancer Agents in Medicinal Chemistry, 18(11), 1639–1648. https://doi.org/10.2174/1871520618666180717121208
  • Xiong, B., Chen, S., Zhu, P., Huang, M., Gao, W., Zhu, R., Qian, J., Peng, Y., Zhang, Y., Dai, H., & Ling, Y. (2019). Design, synthesis, and biological evaluation of novel thiazolyl substituted bis-pyrazole oxime derivatives with potent antitumor activities by selectively inducing apoptosis and ROS in cancer cells. Medicinal Chemistry (Shariqah (United Arab Emirates)), 15(7), 743–754. https://doi.org/10.2174/1573406414666180827112724
  • Xu, C., Cheng, F., Chen, L., Du, Z., Li, W., Liu, G., Lee, P. W., & Tang, Y. (2012). In silico Prediction of Chemical Ames Mutagenicity. Journal of Chemical Information and Modeling, 52(11), 2840–2847. https://doi.org/10.1021/ci300400a
  • Yarden, Y., & Pines, G. (2012). The ERBB network: At last, cancer therapy meets systems biology. Nature Reviews. Cancer, 12(8), 553–563. https://doi.org/10.1038/nrc3309
  • Zhan, W., Che, J., Xu, L., Wu, Y., Hu, X., Zhou, Y., Cheng, G., Hu, Y., Dong, X., & Li, J. (2019). Discovery of pyrazole-thiophene derivatives as highly Potent, orally active Akt inhibitors. European Journal of Medicinal Chemistry, 180, 72–85. https://doi.org/10.1016/j.ejmech.2019.07.017
  • Zhang, D., Asnake, S., Zhang, J., Olsson, P.-E., & Zhao, G. (2018). Discovery of novel 5-methyl-1H-pyrazole derivatives as potential antiprostate cancer agents: Design, synthesis, molecular modeling, and biological evaluation. Chemical Biology & Drug Design, 91(6), 1113–1124. https://doi.org/10.1111/cbdd.13173
  • Zhang, J., Xu, A., Miao, C., Yang, J., Gu, M., & Song, N. (2019). Prognostic value of Lin28A and Lin28B in various human malignancies: A systematic review and meta-analysis. Cancer Cell International, 19, 79. https://doi.org/10.1186/s12935-019-0788-z
  • Zhou, Y., Yamada, N., Tanaka, T., Hori, T., Yokoyama, S., Hayakawa, Y., Yano, S., Fukuoka, J., Koizumi, K., Saiki, I., & Sakurai, H. (2015). Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nature Communications, 6, 7679. https://doi.org/10.1038/ncomms8679.
  • Zuo, H., Yang, D., Yang, Q., Tang, H., Fu, Y.-X., & Wan, Y. (2020). Differential regulation of breast cancer bone metastasis by PARP1 and PARP2. Nature Communications, 11(1), 1578. https://doi.org/10.1038/s41467-020-15429-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.