296
Views
2
CrossRef citations to date
0
Altmetric
Research Article

A multi-epitope vaccine candidate developed from unique immunogenic epitopes against Cryptosporidium hominis by utilizing an immunoinformatics-driven approach

&
Pages 4614-4631 | Received 04 Mar 2022, Accepted 19 Apr 2022, Published online: 05 May 2022

References

  • Ahlers, J. D., & Belyakov, I. M. (2010). Molecular pathways regulating CD4(+) T cell differentiation, anergy and memory with implications for vaccines. Trends in Molecular Medicine, 16(10), 478–491.
  • Andreatta, M., & Nielsen, M. (2016). Gapped sequence alignment using artificial neural networks: Application to the MHC class I system. Bioinformatics, 32(4), 511–517. https://doi.org/10.1093/bioinformatics/btv639
  • Anthony, R. M., Rutitzky, L. I., Urban, J. F., Jr., Stadecker, M. J., & Gause, W. C. (2007). Protective immune mechanisms in helminth infection. Nature Reviews. Immunology, 7(12), 975–987.
  • Barta, J. R., & Thompson, R. C. (2006). What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends in Parasitology, 22(10), 463–468. https://doi.org/10.1016/j.pt.2006.08.001
  • Bones, A. J., Jossé, L., More, C., Miller, C. N., Michaelis, M., & Tsaousis, A. D. (2019). Past and future trends of Cryptosporidium in vitro research. Experimental Parasitology, 196, 28–37. https://doi.org/10.1016/j.exppara.2018.12.001
  • Boulanger, D., Warter, A., Sellin, B., Lindner, V., Pierce, R. J., Chippaux, J. P., & Capron, A. (1999). Vaccine potential of a recombinant glutathione S-transferase cloned from Schistosoma haematobium in primates experimentally infected with an homologous challenge. Vaccine, 17(4), 319–326.
  • Bouzid, M., Hunter, P. R., Chalmers, R. M., & Tyler, K. M. (2013). Cryptosporidium pathogenicity and virulence. Clinical Microbiology Reviews, 26(1), 115–134. https://doi.org/10.1128/CMR.00076-12
  • Carvalho, L. H., Sano, G-i., Hafalla, J. C., Morrot, A., de Lafaille, M. A. C., & Zavala, F. (2002). IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nature Medicine, 8(2), 166–170. https://doi.org/10.1038/nm0202-166
  • Certad, G., Viscogliosi, E., Chabé, M., & Cacciò, S. M. (2017). Pathogenic mechanisms of cryptosporidium and giardia. Trends in Parasitology, 33(7), 561–576. https://doi.org/10.1016/j.pt.2017.02.006
  • Checkley, W., White, A. C., Jaganath, D., Arrowood, M. J., Chalmers, R. M., Chen, X.-M., Fayer, R., Griffiths, J. K., Guerrant, R. L., Hedstrom, L., Huston, C. D., Kotloff, K. L., Kang, G., Mead, J. R., Miller, M., Petri, W. A., Priest, J. W., Roos, D. S., Striepen, B., … Houpt, E. R. (2015). A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. The Lancet. Infectious Diseases, 15(1), 85–94. https://doi.org/10.1016/S1473-3099(14)70772-8
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14, 346.
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Ehrenman, K., Wanyiri, J. W., Bhat, N., Ward, H. D., & Coppens, I. (2013). Cryptosporidium parvum scavenges LDL-derived cholesterol and micellar cholesterol internalized into enterocytes. Cellular Microbiology, 15(7), 1182–1197. https://doi.org/10.1111/cmi.12107
  • Ekkens, M. J., Shedlock, D. J., Jung, E., Troy, A., Pearce, E. L., Shen, H., & Pearce, E. J. (2007). Th1 and Th2 cells help CD8 T-cell responses. Infection and Immunity, 75(5), 2291–2296. https://doi.org/10.1128/IAI.01328-06
  • Fayer, R. (2010). Taxonomy and species delimitation in Cryptosporidium. Experimental Parasitology, 124(1), 90–97. https://doi.org/10.1016/j.exppara.2009.03.005
  • Gargala, G. (2008). Drug treatment and novel drug target against Cryptosporidium. Parasite (Paris, France), 15(3), 275–281. https://doi.org/10.1051/parasite/2008153275
  • Ghosh, P., Bhakta, S., Bhattacharya, M., Sharma, A. R., Sharma, G., Lee, S.-S., & Chakraborty, C. (2021). A novel multi-epitopic peptide vaccine candidate against helicobacter pylori: In-silico identification, design, cloning and validation through molecular dynamics. International Journal of Peptide Research and Therapeutics, 27(2), 1149–1166.
  • Hajighahramani, N., Nezafat, N., Eslami, M., Negahdaripour, M., Rahmatabadi, S. S., & Ghasemi, Y. (2017). Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 48, 83–94. https://doi.org/10.1016/j.meegid.2016.12.010
  • Huang, H., Hao, S., Li, F., Ye, Z., Yang, J., & Xiang, J. (2007). CD4+ Th1 cells promote CD8+ Tc1 cell survival, memory response, tumor localization and therapy by targeted delivery of interleukin 2 via acquired pMHC I complexes. Immunology, 120(2), 148–159.
  • Karanis, P., Kimura, A., Nagasawa, H., Igarashi, I., & Suzuki, N. (2008). Observations on Cryptosporidium life cycle stages during excystation. The Journal of Parasitology, 94(1), 298–300. https://doi.org/10.1645/GE-1185.1
  • Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7(1), 8285. https://doi.org/10.1038/s41598-017-08842-w
  • Kieny, M. P., Excler, J.-L., & Girard, M. (2004). Research and development of new vaccines against infectious diseases. American Journal of Public Health, 94(11), 1931–1935. https://doi.org/10.2105/ajph.94.11.1931
  • Krogsgaard, M., & Davis, M. M. (2005). How T cells 'see' antigen. Nature Immunology, 6(3), 239–245. https://doi.org/10.1038/ni1173
  • Laurent, F., & Lacroix-Lamandé, S. (2017). Innate immune responses play a key role in controlling infection of the intestinal epithelium by Cryptosporidium. International Journal for Parasitology, 47(12), 711–721. https://doi.org/10.1016/j.ijpara.2017.08.001
  • Lendner, M., & Daugschies, A. (2014). Cryptosporidium infections: Molecular advances. Parasitology, 141(11), 1511–1532. https://doi.org/10.1017/S0031182014000237
  • Löscher, T., & Alberer, M. (2013). In J. S. Keystone, D. O. Freedman, P. E. Kozarsky, B. A. Connor, & H. D. Nothdurft (Eds.), Travel medicine (3rd ed., pp. 197–206).Elsevier.
  • Meza, B., Ascencio, F., Sierra-Beltrán, A. P., Torres, J., & Angulo, C. (2017). A novel design of a multi-antigenic, multistage and multi-epitope vaccine against Helicobacter pylori: An in silico approach. Infection, Genetics and Evolution : Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 49, 309–317. https://doi.org/10.1016/j.meegid.2017.02.007
  • Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M. J., & Omidinia, E. (2014). A novel multi-epitope peptide vaccine against cancer: An in silico approach. Journal of Theoretical Biology, 349, 121–134. https://doi.org/10.1016/j.jtbi.2014.01.018
  • Nielsen, M., & Andreatta, M. (2016). NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Medicine, 8(1), 33. https://doi.org/10.1186/s13073-016-0288-x
  • Pandey, R. K., Bhatt, T. K., & Prajapati, V. K. (2018). Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Scientific Reports, 8(1), 1125. https://doi.org/10.1038/s41598-018-19456-1
  • Pandya, N., & Kumar, A. (2022). Immunoinformatics analysis for design of multi-epitope subunit vaccine by using heat shock proteins against Schistosoma mansoni. Journal of Biomolecular Structure and Dynamics, 1–20. https://doi.org/10.1080/07391102.2021.2025430
  • Peters, B., Sidney, J., Bourne, P., Bui, H.-H., Buus, S., Doh, G., Fleri, W., Kronenberg, M., Kubo, R., Lund, O., Nemazee, D., Ponomarenko, J. V., Sathiamurthy, M., Schoenberger, S. P., Stewart, S., Surko, P., Way, S., Wilson, S., & Sette, A. (2005). The design and implementation of the immune epitope database and analysis resource. Immunogenetics, 57(5), 326–336.
  • Ragab, M. F., Hanan, H. A., & Yoshifumi, N. (2018). Past achievements, current situation and future challenges for vaccine development against Cryptosporidium parvum and C. hominis infections. The Journal of Protozoology Research, 28, 39–52.
  • Rahmat Ullah, S., Majid, M., Rashid, M. I., Mehmood, K., & Andleeb, S. (2021). Immunoinformatics driven prediction of multiepitopic vaccine against Klebsiella pneumoniae and Mycobacterium tuberculosis coinfection and its validation via in silico expression. International Journal of Peptide Research and Therapeutics, 27(2), 987–999.
  • Rana, A., Rub, A., & Akhter, Y. (2015). Proteome-wide B and T cell epitope repertoires in outer membrane proteins of Mycobacterium avium subsp. paratuberculosis have vaccine and diagnostic relevance: A holistic approach. Journal of Molecular Recognition : JMR, 28(8), 506–520. https://doi.org/10.1002/jmr.2458
  • Rasmussen, M., & Fenoy, E. (2016). Pan-specific prediction of peptide-MHC class I complex stability, a correlate of T cell immunogenicity. The Journal of Immunology, 197, 1517–1524.
  • Reche, P. A., Glutting, J. P., Zhang, H., & Reinherz, E. L. (2004). Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics, 56(6), 405–419. https://doi.org/10.1007/s00251-004-0709-7
  • Ryan, U., Fayer, R., & Xiao, L. (2014). Cryptosporidium species in humans and animals: Current understanding and research needs. Parasitology, 141(13), 1667–1685. https://doi.org/10.1017/S0031182014001085
  • Ryan, U., & Hijjawi, N. (2015). New developments in Cryptosporidium research. International Journal for Parasitology, 45(6), 367–373. https://doi.org/10.1016/j.ijpara.2015.01.009
  • Shanmugam, A., Rajoria, S., George, A. L., Mittelman, A., Suriano, R., & Tiwari, R. K. (2012). Synthetic toll like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PLoS One, 7(2), e30839.
  • Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., Asa, B. F., Ngale, F. N., Vanhamme, L., & Souopgui, J. (2019). In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific Reports, 9(1), 4409.
  • Widmer, G., Tzipori, S., Fichtenbaum, C. J., & Griffiths, J. K. (1998). Genotypic and phenotypic characterization of Cryptosporidium parvum isolates from people with AIDS. The Journal of Infectious Diseases, 178(3), 834–840.
  • Xiao, L. (2010). Molecular epidemiology of cryptosporidiosis: An update. Experimental Parasitology, 124(1), 80–89. https://doi.org/10.1016/j.exppara.2009.03.018
  • Xiao, L., & Feng, Y. (2008). Zoonotic cryptosporidiosis. FEMS Immunology and Medical Microbiology, 52(3), 309–323. https://doi.org/10.1111/j.1574-695X.2008.00377.x
  • Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cellular & Molecular Immunology, 15(2), 182–184. https://doi.org/10.1038/cmi.2017.92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.