209
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In silico insights into the dimer structure and deiodinase activity of type III iodothyronine deiodinase from bioinformatics, molecular dynamics simulations, and QM/MM calculations

, &
Pages 4819-4829 | Received 18 Jan 2022, Accepted 27 Apr 2022, Published online: 17 May 2022

References

  • Boucher, I. W., McMillan, P. J., Gabrielsen, M., Akerman, S. E., Brannigan, J. A., Schnick, C., Brzozowski, A. M., Wilkinson, A. J., & Müller, S. (2006). Structural and biochemical characterization of a mitochondrial peroxiredoxin from plasmodium falciparum. Molecular Microbiology, 61(4), 948–959.
  • Adamo, C., & Barone, V. (1998). Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The MPW and MPW1PW models. The Journal of Chemical Physics, 108(2), 664–675. https://doi.org/10.1063/1.475428
  • Aloy, P., Ceulemans, H., Stark, A., & Russell, R. B. (2003). The relationship between sequence and interaction divergence in proteins. Journal of Molecular Biology, 332(5), 989–998.
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating PK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(Web Server issue), W537–W541. https://doi.org/10.1093/nar/gks375
  • Atkinson, H. J., & Babbitt, P. C. (2009). An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations. PLoS Computational Biology, 5(10), e1000541.
  • Ayoub, A. T., Craddock, T. J. A., Klobukowski, M., & Tuszynski, J. (2014). Analysis of the strength of interfacial hydrogen bonds between tubulin dimers using quantum theory of atoms in molecules. Biophysical Journal, 107(3), 740–750.
  • Bayse, C. A.,Marsan, E. S.,Garcia, J. R., &Tran-Thompson, A. T. (2020). Thyroxine binding to type III iodothyronine deiodinase. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-72243-9
  • Bayse, C. (2018). A. halogen bonding from the bonding perspective with considerations for mechanisms of thyroid hormone activation and inhibition. New Journal of Chemistry = Nouveau Journal de Chimie, 42(13), 10623–10632.
  • Bayse, C. A., & Rafferty, E. R. (2010). Is halogen bonding the basis for iodothyronine deiodinase activity? Inorganic Chemistry, 49(12), 5365–5367.
  • Bayse, C. A., Marsan, E. S., Garcia, J. R., & Tran-Thompson, A. T. (2020). Thyroxine binding to type III iodothyronine deiodinase. Scientific Reports10(1), 15401.
  • Bianco, A. C., & Kim, B. W. (2006). Deiodinases: Implications of the local control of thyroid hormone action. The Journal of Clinical Investigation, 116(10), 2571–2579.
  • Bianco, A. C., Salvatore, D., Gereben, B., Berry, M. J., & Larsen, P. R. (2002). Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocrine Reviews, 23(1), 38–89.
  • Brylinski, M. (2018). Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions. Chemical Biology & Drug Design, 91(2), 380–390.
  • Callebaut, I., Curcio-Morelli, C., Mornon, J. P., Gereben, B., Buettner, C., Huang, S., Castro, B., Fonseca, T. L., Harney, J. W., Larsen, P. R., & Bianco, A. C. (2003). The Iodothyronine selenodeiodinases are thioredoxin-fold family proteins containing a glycoside hydrolase clan GH-A-like structure. The Journal of Biological Chemistry, 278(38), 36887–36896.
  • Carpenter, E. P., Beis, K., Cameron, A. D., & Iwata, S. (2008). Overcoming the challenges of membrane protein crystallography. Current Opinion in Structural Biology, 18(5), 581–586.
  • Case, D. A., Betz, R. M., Cerutti, D. S., Cheatham, T. E., Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Lin, C., Luchko, T., … & Kollman, P. A. (2016). AMBER 16
  • Cesario, D., Fortino, M., Marino, T., Nunzi, F., Russo, N., & Sicilia, E. (2019). the role of the halogen bond in iodothyronine deiodinase: Dependence on chalcogen substitution in naphthyl-based mimetics. Journal of Computational Chemistry, 40(8), 944–951. https://doi.org/10.1002/jcc.25775
  • Chen, R., Li, L., & Weng, Z. (2003). ZDOCK: An initial-stage protein-docking algorithm. Proteins, 52(1), 80–87. https://doi.org/10.1002/prot.10389
  • Chung, S. Y., & Subbiah, S. (1996). A structural explanation for the twilight zone of protein sequence homology. Structure, 4(10), 1123–1127. https://doi.org/10.1016/S0969-2126(96)00119-0
  • Collet, J.-F., & Messens, J. (2010). Structure, function, and mechanism of thioredoxin proteins. Antioxidants & Redox Signaling, 13(8), 1205–1216.
  • Copley, S. D., Novak, W. R. P., & Babbitt, P. C. (2004). Divergence of function in the thioredoxin fold suprafamily: Evidence for evolution of peroxiredoxins from a thioredoxin-like ancestor. Biochemistry, 43(44), 13981–13995. https://doi.org/10.1021/bi048947r
  • Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K., & Frisch, M. J. (1999). A new ONIOM implementation in Gaussian98. Part I. The calculation of energies, gradients, vibrational frequencies and electric field derivatives1dedicated to Professor Keiji Morokuma in celebration of his 65th Birthday.1. Journal of Molecular Structure: THEOCHEM, 461–462, 1–21.
  • Darras, V. M., & Van Herck, S. L. J. (2012). Iodothyronine deiodinase structure and function: From ascidians to humans. The Journal of Endocrinology, 215(2), 189–206.
  • de Vries, S. J., Schindler, C. E. M., Chauvot de Beauchêne, I., & Zacharias, M. (2015). A Web interface for easy flexible protein-protein docking with attract. Biophysical Journal, 108(3), 462–465.
  • Dentice, M., & Salvatore, D. (2011). Deiodinases: The balance of thyroid hormone: Local impact of thyroid hormone inactivation. The Journal of Endocrinology, 209(3), 273–282.
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012.
  • Evrard, C., Capron, A., Marchand, C., Clippe, A., Wattiez, R., Soumillion, P., Knoops, B., & Declercq, J.-P. (2004). Crystal structure of a dimeric oxidized form of human peroxiredoxin 5. Journal of Molecular Biology, 337(5), 1079–1090. https://doi.org/10.1016/j.jmb.2004.02.017
  • Fetrow, J. S. (1995). Omega Loops; Nonregular secondary structures significant in protein function and stability. FASEB Journal, 9(9), 708–717. https://doi.org/10.1096/fasebj.9.9.7601335
  • Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H., Izmaylov, A., Bloino, J., Zheng, G., Sonnenberg, J., Hada, M., … Fox, D. (2009). Gaussian 09, Revision B.01. Gaussian 09, Revision B.01. Gaussian, Inc.
  • Germain, D. L. S., & Galton, V. A. (1997). The deiodinase family of selenoproteins. Thyroid, 7(4), 655–668. https://doi.org/10.1089/thy.1997.7.655
  • Gordon, J. C., Myers, J. B., Folta, T., Shoja, V., Heath, L. S., & Onufriev, A. (2005). H++: A Server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Research, 33(Web Server issue), W368–W371. https://doi.org/10.1093/nar/gki464
  • Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Gretes, M. C., & Karplus, P. A. (2013). Observed octameric assembly of a plasmodium yoelii peroxiredoxin can be explained by the replacement of native “ball-and-socket” interacting residues by an affinity tag. Protein Science, 22(10), 1445–1452.
  • Hall, A., Nelson, K., Poole, L. B., & Karplus, P. A. (2011). Structure-based insights into the catalytic power and conformational dexterity of peroxiredoxins. Antioxidants & Redox Signaling, 15(3), 795–815.
  • Hall, A., Sankaran, B., Poole, L. B., & Karplus, P. A. (2009). Structural changes common to catalysis in the Tpx peroxiredoxin subfamily. Journal of Molecular Biology, 393(4), 867–881. https://doi.org/10.1016/j.jmb.2009.08.040
  • Heo, L., Lee, H., & Seok, C. (2016). GalaxyRefineComplex: Refinement of protein-protein complex model structures driven by interface repacking. Scientific Reports, 6, 32153.
  • Hirotsu, S., Abe, Y., Okada, K., Nagahara, N., Hori, H., Nishino, T., & Hakoshima, T. (1999). Crystal structure of a multifunctional 2-Cys peroxiredoxin heme-binding protein 23 KDa/proliferation-associated gene product. Proceedings of the National Academy of Sciences of the United States of America, 96(22), 12333–12338.
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Structure, Function, and Bioinformatics, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82.
  • Hu, Z., Ma, B., Wolfson, H., & Nussinov, R. (2000). Conservation of polar residues as hot spots at protein interfaces. Proteins: Structure, Function, and Genetics, 39(4), 331–342. https://doi.org/10.1002/(SICI)1097-0134(20000601)39:4<331::AID-PROT60>3.0.CO;2-A
  • Jorgensen, W. L., & Schyman, P. (2012). Treatment of halogen bonding in the OPLS-AA force field; application to potent anti-HIV agents. Journal of Chemical Theory and Computation, 8(10), 3895–3801.
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kniewel, R., Buglino, J., Solorzano, V., Wu, J., & Lima, C. D. (2003). Structure of a thiol peroxidase from haemophilus influenzae Rd.
  • Koh, C. S., Didierjean, C., Navrot, N., Panjikar, S., Mulliert, G., Rouhier, N., Jacquot, J.-P., Aubry, A., Shawkataly, O., & Corbier, C. (2007). Crystal structures of a poplar thioredoxin peroxidase that exhibits the structure of glutathione peroxidases: Insights into redox-driven conformational changes. Journal of Molecular Biology, 370(3), 512–529.
  • Köhrle, J. (1999). Local activation and inactivation of thyroid hormones: The deiodinase family. Molecular and Cellular Endocrinology, 151(1–2), 103–119.
  • Köhrle, J. (2000). The selenoenzyme family of deiodinase isozymes controls local thyroid hormone availability. Reviews in Endocrine & Metabolic Disorders, 1(1–2), 49–58.
  • Köhrle, J. (2002). Iodothyronine deiodinases. Methods in Enzymology, 347, 125–167.
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The cluspro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kuiper, G., Kester, M. H. A., Peeters, R., & Visser, T. J. (2005). Biochemical mechanisms of thyroid hormone deiodination. Thyroid, 15(8), 787–798. https://doi.org/10.1089/thy.2005.15.787
  • Labunskyy, V. M., Hatfield, D. L., & Gladyshev, V. N. (2014). Selenoproteins: Molecular pathways and physiological roles. Physiological Reviews, 94(3), 739–777.
  • Larsen, P. R., & Zavacki, A. M. (2012). The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. European Thyroid Journal, 1(4), 232–242.
  • Le Grand, S., Götz, A. W., & Walker, R. C. (2013). SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Computer Physics Communications, 184(2), 374–380. https://doi.org/10.1016/j.cpc.2012.09.022
  • LeFevre, K. R., & Cordes, M. H. J. (2003). Retroevolution of λ Cro toward a stable monomer. Proceedings of the National Academy of Sciences, 100(5), 2345–2350. https://doi.org/10.1073/pnas.0537925100
  • Lensink, M. F., Velankar, S., Kryshtafovych, A., Huang, S.-Y., Schneidman-Duhovny, D., Sali, A., Segura, J., Fernandez-Fuentes, N., Viswanath, S., Elber, R., Grudinin, S., Popov, P., Neveu, E., Lee, H., Baek, M., Park, S., Heo, L., Rie Lee, G., Seok, C., ˙˙˙ & Wodak, S. J. (2016). Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment. Proteins: Structure, Function, and Bioinformatics, 84(S1), 323–348. https://doi.org/10.1002/prot.25007
  • Luongo, C., Dentice, M., & Salvatore, D. (2019). Deiodinases and their intricate role in thyroid hormone homeostasis. Nature Reviews. Endocrinology, 15(8), 479–488.
  • Marsan, E. S., & Bayse, C. A. (2017). Halogen-bonding interactions of polybrominated diphenyl ethers and thyroid hormone derivatives: A potential mechanism for the inhibition of iodothyronine deiodinase. Chemistry - A European Journal , 23(27), 6625–6633. https://doi.org/10.1002/chem.201700407
  • Marsan, E. S., & Bayse, C. A. (2020). Halogen bonding interactions of polychlorinated biphenyls and the potential for thyroid disruption. Chemistry – A European Journal, 26(23), 5200–5209. https://doi.org/10.1002/chem.201903904
  • Martin, J. L. (1995). Thioredoxin —A fold for all reasons. Structure, 3(3), 245–250. https://doi.org/10.1016/S0969-2126(01)00154-X
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). Py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321.
  • Moghadaszadeh, B., & Beggs, A. H. (2006). Selenoproteins and their impact on human health through diverse physiological pathways. Physiology, 21, 307–315. https://doi.org/10.1152/physiol.00021.2006
  • Mondal, S., Raja, K., Schweizer, U., & Mugesh, G. (2016). Chemistry and biology in the biosynthesis and action of thyroid hormones. Angewandte Chemie International Edition, 55(27), 7606–7630. https://doi.org/10.1002/anie.201601116
  • Pavuk, M., Schecter, A. J., Akhtar, F. Z., & Michalek, J. E. (2003). Serum 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) levels and thyroid function in air force veterans of the vietnam war. Annals of Epidemiology, 13(5), 335–343.
  • Pierce, B., Tong, W., & Weng, Z. (2005). M-ZDOCK: A grid-based approach for Cn symmetric multimer docking. Bioinformatics, 21(8), 1472–1478. https://doi.org/10.1093/bioinformatics/bti229
  • Ren, G., Stephan, D., Xu, Z., Zheng, Y., Tang, D., Harrison, R. S., Kurz, M., Jarrott, R., Shouldice, S. R., Hiniker, A., Martin, J. L., Heras, B., & Bardwell, J. C. A. (2009). Properties of the thioredoxin fold superfamily are modulated by a single amino acid residue. The Journal of Biological Chemistry, 284(15), 10150–10159.
  • Rijntjes, E., Scholz, P. M., Mugesh, G., & Köhrle, J. (2013). Se- and S-based thiouracil and methimazole analogues exert different inhibitory mechanisms on type 1 and Type 2 deiodinases. European Thyroid Journal, 2(4), 252–258.
  • Roe, D. R., Cheatham, T. E., & PTRAJ, C. (2013). Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095.
  • Russo, S. C., Salas-Lucia, F., & Bianco, A. C. (2021). Deiodinases and the metabolic code for thyroid hormone action. Endocrinology, 162(8), 1–13. https://doi.org/10.1210/endocr/bqab059
  • Sagar, G. D. V., Gereben, B., Callebaut, I., Mornon, J.-P., Zeöld, A., Curcio-Morelli, C., Harney, J. W., Luongo, C., Mulcahey, M. A., Larsen, P. R., Huang, S. A., & Bianco, A. C. (2008). The thyroid hormone-inactivating deiodinase functions as a homodimer. Molecular Endocrinology, 22(6), 1382–1393.
  • Sagar, G. D. V., Gereben, B., Callebaut, I., Mornon, J.-P., Zeöld, A., Silva, W. S., da; Luongo, C., Dentice, M., Tente, S. M., Freitas, B. C. G., Harney, J. W., Zavacki, A. M., & Bianco, A. C. (2007). Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity. Molecular and Cellular Biology, 27(13), 4774–4783.
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Sarma, G. N., Nickel, C., Rahlfs, S., Fischer, M., Becker, K., & Karplus, P. A. (2005). Crystal structure of a novel plasmodium falciparum 1-Cys peroxiredoxin. Journal of Molecular Biology, 346(4), 1021–1034.
  • Schäfer, A., Huber, C., & Ahlrichs, R. (1994). Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. The Journal of Chemical Physics, 100(8), 5829–5835. https://doi.org/10.1063/1.467146
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–367.
  • Schweizer, U., Schlicker, C., Braun, D., Köhrle, J., & Steegborn, C. (2014). Crystal structure of mammalian selenocysteine-dependent iodothyronine deiodinase suggests a peroxiredoxin-like catalytic mechanism. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10526–10531.
  • Schweizer, U., Towell, H., Vit, A., Rodriguez-Ruiz, A., & Steegborn, C. (2017). Structural aspects of thyroid hormone binding to proteins and competitive interactions with natural and synthetic compounds. Molecular and Cellular Endocrinology, 458, 57–67.
  • Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., Thompson, J. D., & Higgins, D. G. (2011). Scalable generation of high-quality protein multiple sequence alignments using clustal omega. Molecular Systems Biology, 7, 539.
  • Souza, T. A. C. B., Morais, M. A. B., Giuseppe, P. O., & Murakami, M. T. (2013). Crystal structure of the mitochondrial peroxiredoxin from leishmania braziliensis in the dimeric form.
  • Steegborn, C., & Schweizer, U. (2020). Structure and mechanism of iodothyronine deiodinases – What we know, what we don't know, and what would be nice to Know. Experimental and Clinical Endocrinology & Diabetes, 128(6-07), 375–378. https://doi.org/10.1055/a-1022-9916
  • Tao, P., & Schlegel, H. B. (2010). A toolkit to assist ONIOM calculations. Journal of Computational Chemistry, 31(12), 2363–2369.
  • Thompson, L. C., Walters, J., Burke, J., Parsons, J. F., Armstrong, R. N., & Dirr, H. W. (2006). Double mutation at the subunit interface of glutathione transferase RGSTM1-1 results in a stable, folded monomer. Biochemistry, 45(7), 2267–2273. https://doi.org/10.1021/bi0519506
  • van der Spek, A. H., Fliers, E., & Boelen, A. (2017). The classic pathways of thyroid hormone metabolism. Molecular and Cellular Endocrinology, 458, 29–38.
  • van Gunsteren, W. F., & Berendsen, H. J. C. (1977). Algorithms for macromolecular dynamics and constraint dynamics. Molecular Physics, 34(5), 1311–1327. https://doi.org/10.1080/00268977700102571
  • Vreven, T., Byun, K. S., Komáromi, I., Dapprich, S., Montgomery, J. A., Morokuma, K., & Frisch, M. J. (2006). Combining quantum mechanics methods with molecular mechanics methods in ONIOM. Journal of Chemical Theory and Computation, 2(3), 815–826.
  • Vreven, T., Hwang, H., Pierce, B. G., & Weng, Z. (2014). Evaluating template-based and template-free protein–protein complex structure prediction. Briefings in Bioinformatics, 15(2), 169–176.
  • Wadt, W. R., & Hay, P. J. (1985). Ab initio effective core potentials for molecular calculations. potentials for main group elements Na to Bi. The Journal of Chemical Physics, 82(1), 284–298. https://doi.org/10.1063/1.448800
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Weichsel, A., Gasdaska, J. R., Powis, G., & Montfort, W. R. (1996). Crystal structures of reduced, oxidized, and mutated human thioredoxins: Evidence for a regulatory homodimer. Structure, 4(6), 735–751. https://doi.org/10.1016/S0969-2126(96)00079-2
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: A web server to predict and analyze the protein–protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–W330.
  • Zoete, V., Irving, M. B., & Michielin, O. (2010). MM-GBSA binding free energy decomposition and T cell receptor engineering. Journal of Molecular Recognition, 23(2), 142–152. https://doi.org/10.1002/jmr.1005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.