345
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Reverse vaccinology-based prediction of a multi-epitope SARS-CoV-2 vaccine and its tailoring to new coronavirus variants

ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 4917-4938 | Received 10 Nov 2021, Accepted 30 Apr 2022, Published online: 13 May 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 12(3), 254. https://doi.org/10.3390/v12030254
  • Ahn, D.-G., Shin, H.-J., Kim, M.-H., Lee, S., Kim, H.-S., Myoung, J., Kim, B.-T., & Kim, S.-J. (2020). Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). Journal of Microbiology and Biotechnology, 30(3), 313–324. https://doi.org/10.4014/jmb.2003.03011
  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6, 34984. https://doi.org/10.1038/srep34984
  • Andrusier, N., Nussinov, R., & Wolfson, H. J. (2007). FireDock: Fast interaction refinement in molecular docking. Proteins, 69(1), 139–159. https://doi.org/10.1002/prot.21495
  • Antonio-Herrera, L., Badillo-Godinez, O., Medina-Contreras, O., Tepale-Segura, A., García-Lozano, A., Gutierrez-Xicotencatl, L., Soldevila, G., Esquivel-Guadarrama, F. R., Idoyaga, J., & Bonifaz, L. C. (2018). The nontoxic cholera B subunit is a potent adjuvant for intradermal DC-targeted vaccination. Frontiers in Immunology, 9, 2212. https://doi.org/10.3389/fimmu.2018.02212
  • Ayub, G., Waheed, Y., & Najmi, M. H. (2016). Prediction and conservancy analysis of promiscuous T-cell binding epitopes of Ebola virus L protein: An in silico approach. Asian Pacific Journal of Tropical Disease, 6(3), 169–173. https://doi.org/10.1016/S2222-1808(15)61007-6
  • Bachmair, A., Finley, D., & Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino-terminal residue. Science (New York, NY), 234(4773), 179–186. https://doi.org/10.1126/science.3018930
  • Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C., & Peters, B. (2013). Properties of MHC class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 9(10), e1003266. https://doi.org/10.1371/journal.pcbi.1003266
  • Chan, J. F.-W., Kok, K.-H., Zhu, Z., Chu, H., To, K. K.-W., Yuan, S., & Yuen, K.-Y. (2020). Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerging Microbes & Infections, 9(1), 221–236. https://doi.org/10.1080/22221751.2020.1719902
  • Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Research, 33(Web Server issue), W72–76. https://doi.org/10.1093/nar/gki396
  • Chiou, S.-S., Fan, Y.-C., Crill, W. D., Chang, R.-Y., & Chang, G.-J. J. (2012). Mutation analysis of the cross-reactive epitopes of Japanese encephalitis virus envelope glycoprotein. The Journal of General Virology, 93(Pt 6), 1185–1192. https://doi.org/10.1099/vir.0.040238-0
  • Dar, H., Zaheer, T., Rehman, M. T., Ali, A., Javed, A., Khan, G. A., Babar, M. M., & Waheed, Y. (2016). Prediction of promiscuous T-cell epitopes in the Zika virus polyprotein: An in silico approach. Asian Pacific Journal of Tropical Medicine, 9(9), 844–850. https://doi.org/10.1016/j.apjtm.2016.07.004
  • Dar, H. A., Zaheer, T., Shehroz, M., Ullah, N., Naz, K., Muhammad, S. A., Zhang, T., & Ali, A. (2019). Immunoinformatics-aided design and evaluation of a potential multi-epitope vaccine against klebsiella pneumoniae. Vaccines, 7(3), E88. https://doi.org/10.3390/vaccines7030088
  • DeFever, R. S., Targonski, C., Hall, S. W., Smith, M. C., & Sarupria, S. (2019). A generalized deep learning approach for local structure identification in molecular simulations. Chemical Science, 10(32), 7503–7515. https://doi.org/10.1039/c9sc02097g
  • Dey, A. K., Malyala, P., & Singh, M. (2014). Physicochemical and functional characterization of vaccine antigens and adjuvants. Expert Review of Vaccines, 13(5), 671–685. https://doi.org/10.1586/14760584.2014.907528
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2—A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Enayatkhani, M., Hasaniazad, M., Faezi, S., Guklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2021). Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure and Dynamics, 39(8), 2857-2872. https://doi.org/10.1080/07391102.2020.1756411
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fleri, W., Paul, S., Dhanda, S. K., Mahajan, S., Xu, X., Peters, B., & Sette, A. (2017). The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Frontiers in Immunology, 8, 278. https://doi.org/10.3389/fimmu.2017.00278
  • Gallicchio, E., Lapelosa, M., & Levy, R. M. (2010). The binding energy distribution analysis method (BEDAM) for the estimation of protein-ligand binding affinities. Journal of Chemical Theory and Computation, 6(9), 2961–2977. https://doi.org/10.1021/ct1002913
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Grifoni, A., Sidney, J., Zhang, Y., Scheuermann, R. H., Peters, B., & Sette, A. (2020). A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host & Microbe, 27(4), 671–680.e2. https://doi.org/10.1016/j.chom.2020.03.002
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(Web Server issue), W384–388. https://doi.org/10.1093/nar/gkt458
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Joshi, A., Joshi, B. C., Mannan, M. A.-U., & Kaushik, V. (2020). Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Informatics in Medicine Unlocked, 19, 100338. https://doi.org/10.1016/j.imu.2020.100338
  • Ju, B., Zhang, Q., Ge, J., Wang, R., Sun, J., Ge, X., Yu, J., Shan, S., Zhou, B., Song, S., Tang, X., Yu, J., Lan, J., Yuan, J., Wang, H., Zhao, J., Zhang, S., Wang, Y., Shi, X., … Zhang, L. (2020). Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 584(7819), 115–119. https://doi.org/10.1038/s41586-020-2380-z
  • Jyotisha, Singh, S., & Qureshi, I. A. (2022). Multi-epitope vaccine against SARS-CoV-2 applying immunoinformatics and molecular dynamics simulation approaches. Journal of Biomolecular Structure & Dynamics, 40(7), 2917-2933.. https://doi.org/10.1080/07391102.2020.1844060
  • Kazi, A., Chuah, C., Majeed, A. B. A., Leow, C. H., Lim, B. H., & Leow, C. Y. (2018). Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design. Pathogens and Global Health, 112(3), 123–131. https://doi.org/10.1080/20477724.2018.1446773
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–297. https://doi.org/10.1093/nar/gks493
  • Kostal, J. (2016). Computational chemistry in predictive toxicology. In Advances in molecular toxicology (Vol. 10, pp. 139–186). Elsevier. https://doi.org/10.1016/B978-0-12-804700-2.00004-0
  • Kovacs, J. A., Chacón, P., & Abagyan, R. (2004). Predictions of protein flexibility: First-order measures. Proteins, 56(4), 661–668. https://doi.org/10.1002/prot.20151
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kumar, A., Kumar, P., Saumya, K. U., Kapuganti, S. K., Bhardwaj, T., & Giri, R. (2020). Exploring the SARS-CoV-2 structural proteins for multi-epitope vaccine development: An in-silico approach. Expert Review of Vaccines, 19(9), 887–898. https://doi.org/10.1080/14760584.2020.1813576
  • Kumar, C. V., Swetha, R. G., Anbarasu, A., & Ramaiah, S. (2014). Computational analysis reveals the association of threonine 118 methionine mutation in PMP22 resulting in CMT-1A. Advances in Bioinformatics, 2014, 502618. https://doi.org/10.1155/2014/502618
  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA Calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kupferschmidt, K., & Cohen, J. (2020). Race to find COVID-19 treatments accelerates. Science (New York, NY), 367(6485), 1412–1413. https://doi.org/10.1126/science.367.6485.1412
  • Laskowski, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37(Database issue), D355–359. https://doi.org/10.1093/nar/gkn860
  • Lee, C. H., & Koohy, H. (2020). In silico identification of vaccine targets for 2019-nCoV. F1000Research, 9, 145. https://doi.org/10.12688/f1000research.22507.2
  • Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide vaccine: Progress and challenges. Vaccines, 2(3), 515–536. https://doi.org/10.3390/vaccines2030515
  • Liu, W., Liu, L., Kou, G., Zheng, Y., Ding, Y., Ni, W., Wang, Q., Tan, L., Wu, W., Tang, S., Xiong, Z., & Zheng, S. (2020). Evaluation of nucleocapsid and spike protein-based enzyme-linked immunosorbent assays for detecting antibodies against SARS-CoV-2. Journal of Clinical Microbiology, 58(6), e00461–20. https://doi.org/10.1128/JCM.00461-20
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–276. https://doi.org/10.1093/nar/gku339
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., Miresmaeili, S. M., & Iranpur Mobarakeh, V. (2021). Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure and Dynamics, 39, 1–18. https://doi.org/10.1080/07391102.2021.1883111
  • Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R., & Wolfson, H. J. (2008). FireDock: A web server for fast interaction refinement in molecular docking. Nucleic Acids Research, 36(Web Server issue), W229–W232. https://doi.org/10.1093/nar/gkn186
  • Masignani, V., Pizza, M., & Moxon, E. R. (2019). The development of a vaccine against meningococcus B using reverse vaccinology. Frontiers in Immunology, 10, 751. https://doi.org/10.3389/fimmu.2019.00751
  • Monterrubio-López, G. P., González-Y-Merchand, J. A., & Ribas-Aparicio, R. M. (2015). Identification of novel potential vaccine candidates against tuberculosis based on reverse vaccinology. BioMed Research International, 2015, 483150. https://doi.org/10.1155/2015/483150
  • Nosé, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Otto, S. P., Day, T., Arino, J., Colijn, C., Dushoff, J., Li, M., Mechai, S., Van Domselaar, G., Wu, J., Earn, D. J. D., & Ogden, N. H. (2021). The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-19 pandemic. Current Biology: CB, 31(14), R918–R929. https://doi.org/10.1016/j.cub.2021.06.049
  • Panda, S., & Chandra, G. (2012). Physicochemical characterization and functional analysis of some snake venom toxin proteins and related non-toxin proteins of other chordates. Bioinformation, 8(18), 891–896. https://doi.org/10.6026/97320630008891
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Paul, S., Sidney, J., Sette, A., & Peters, B. (2016). TepiTool: A pipeline for computational prediction of T cell epitope candidates. Current Protocols in Immunology, 114, 18.19.1–18.19.24. https://doi.org/10.1002/cpim.12
  • Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9(1), 514. https://doi.org/10.1186/1471-2105-9-514
  • Rampogu, S., Lemuel, M. R., & Lee, K. W. (2022). Virtual screening, molecular docking, molecular dynamics simulations and free energy calculations to discover potential DDX3 inhibitors. Advances in Cancer Biology - Metastasis, 4, 100022. https://doi.org/10.1016/j.adcanc.2021.100022
  • Reed, S. G., Orr, M. T., & Fox, C. B. (2013). Key roles of adjuvants in modern vaccines. Nature Medicine, 19(12), 1597–1608. https://doi.org/10.1038/nm.3409
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019a). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/j.molimm.2019.04.030
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019b). In silico analysis of synaptonemal complex protein 1 (SYCP1) and acrosin binding protein (ACRBP) antigens to design novel multiepitope peptide cancer vaccine against breast cancer. International Journal of Peptide Research and Therapeutics, 25(4), 1343–1359. https://doi.org/10.1007/s10989-018-9780-z
  • Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Sanami, S., Alizadeh, M., Nosrati, M., Dehkordi, K. A., Azadegan-Dehkordi, F., Tahmasebian, S., Nosrati, H., Arjmand, M.-H., Ghasemi-Dehnoo, M., Rafiei, A., & Bagheri, N. (2021). Exploring SARS-COV-2 structural proteins to design a multi-epitope vaccine using immunoinformatics approach: An in silico study. Computers in Biology and Medicine, 133, 104390. https://doi.org/10.1016/j.compbiomed.2021.104390
  • Sarkar, B., Ullah, M. A., Araf, Y., & Rahman, M. S. (2020). Engineering a novel subunit vaccine against SARS-CoV-2 by exploring immunoinformatics approach. Informatics in Medicine Unlocked, 21, 100478. https://doi.org/10.1016/j.imu.2020.100478
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), W363–367. https://doi.org/10.1093/nar/gki481
  • Sharma, O., Sultan, A. A., Ding, H., & Triggle, C. R. (2020). A review of the progress and challenges of developing a vaccine for COVID-19. Frontiers in Immunology, 11, 585354. https://doi.org/10.3389/fimmu.2020.585354
  • Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17(4), 355–362. https://doi.org/10.1002/prot.340170404
  • Stoloff, G. A., & Caparros-Wanderley, W. (2007). Synthetic multi-epitope peptides identified in silico induce protective immunity against multiple influenza serotypes. European Journal of Immunology, 37(9), 2441–2449. https://doi.org/10.1002/eji.200737254
  • Stratmann, T. (2015). Cholera toxin subunit B as adjuvant - An accelerator in protective immunity and a break in autoimmunity. Vaccines, 3(3), 579–596. https://doi.org/10.3390/vaccines3030579
  • Thanh Le, T., Andreadakis, Z., Kumar, A., Gómez Román, R., Tollefsen, S., Saville, M., & Mayhew, S. (2020). The COVID-19 vaccine development landscape. Nature Reviews. Drug Discovery, 19(5), 305–306. https://doi.org/10.1038/d41573-020-00073-5
  • Usher, A. D. (2020). COVID-19 vaccines for all? Lancet (London, England), 395(10240), 1822–1823. https://doi.org/10.1016/S0140-6736(20)31354-4
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vidhya, R. V., Achuthsankar, S. N., Pawan, K. D., & Anuraj, N. (2015, February). Epitope characterization and docking studies on Chikungunya viral Envelope 2 protein.
  • Voysey, M., Clemens, S. A. C., Madhi, S. A., Weckx, L. Y., Folegatti, P. M., Aley, P. K., Angus, B., Baillie, V. L., Barnabas, S. L., Bhorat, Q. E., Bibi, S., Briner, C., Cicconi, P., Collins, A. M., Colin-Jones, R., Cutland, C. L., Darton, T. C., Dheda, K., Duncan, C. J. A., … Zuidewind, P., Oxford COVID Vaccine Trial Group. (2021). Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet (London, England), 397(10269), 99–111. https://doi.org/10.1016/S0140-6736(20)32661-1
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: A web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–W330. https://doi.org/10.1093/nar/gkz397
  • WHO. (2020a). Coronavirus disease (COVID-19). Weekly Epidemiological Update. http://www.who.int/docs/default-source/coronaviruse/situation-reports/20200831-weekly-epi-update-3.pdf?sfvrsn=d7032a2a_4
  • WHO. (2020b). The coronavirus disease (COVID-19) and the virus that causes it. http://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
  • WHO. (2021). Tracking SARS-CoV-2 variants. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–410. https://doi.org/10.1093/nar/gkm290
  • Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D., & Hochstrasser, D. F. (1999). Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology (Clifton, NJ), 112, 531–552. https://doi.org/10.1385/1-59259-584-7:531
  • Wu, A., Peng, Y., Huang, B., Ding, X., Wang, X., Niu, P., Meng, J., Zhu, Z., Zhang, Z., Wang, J., Sheng, J., Quan, L., Xia, Z., Tan, W., Cheng, G., & Jiang, T. (2020). Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe, 27(3), 325–328. https://doi.org/10.1016/j.chom.2020.02.001
  • Xia, B., Vajda, S., & Kozakov, D. (2016). Accounting for pairwise distance restraints in FFT-based protein-protein docking. Bioinformatics (Oxford, England), 32(21), 3342–3344. https://doi.org/10.1093/bioinformatics/btw306
  • Yang, J., Anishchenko, I., Park, H., Peng, Z., Ovchinnikov, S., & Baker, D. (2020). Improved protein structure prediction using predicted interresidue orientations. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1496–1503. https://doi.org/10.1073/pnas.1914677117
  • Yazdani, Z., Rafiei, A., Yazdani, M., & Valadan, R. (2020). Design an efficient multi-epitope peptide vaccine candidate against SARS-CoV-2: An in silico analysis. Infection and Drug Resistance, 13, 3007–3022. https://doi.org/10.2147/IDR.S264573
  • Zeng, W., Liu, G., Ma, H., Zhao, D., Yang, Y., Liu, M., Mohammed, A., Zhao, C., Yang, Y., Xie, J., Ding, C., Ma, X., Weng, J., Gao, Y., He, H., & Jin, T. (2020). Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochemical and Biophysical Research Communications, 527(3), 618–623. https://doi.org/10.1016/j.bbrc.2020.04.136
  • Zhang, C., Zheng, W., Huang, X., Bell, E. W., Zhou, X., & Zhang, Y. (2020). Protein structure and sequence reanalysis of 2019-nCoV genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and HIV-1. Journal of Proteome Research, 19(4), 1351–1360. https://doi.org/10.1021/acs.jproteome.0c00129
  • Zhou, S., Liu, Y., Wang, S., & Wang, L. (2022). Effective prediction of short hydrogen bonds in proteins via machine learning method. Scientific Reports, 12(1), 469. https://doi.org/10.1038/s41598-021-04306-4
  • Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W., China Novel Coronavirus Investigating and Research Team. (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8), 727–733. https://doi.org/10.1056/NEJMoa2001017
  • Zhu, S., Liu, K., Chai, Y., Wu, Y., Lu, D., Xiao, W., Cheng, H., Zhao, Y., Ding, C., Lyu, J., Lou, Y., Gao, G. F., & Liu, W. J. (2019). Divergent peptide presentations of HLA-A*30 alleles revealed by structures with pathogen peptides. Frontiers in Immunology, 10, 1709. https://doi.org/10.3389/fimmu.2019.01709

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.