179
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Molecular evolution and structural analyses of the spike glycoprotein from Brazilian SARS-CoV-2 genomes: the impact of selected mutations

ORCID Icon, , , , ORCID Icon &
Pages 3110-3128 | Received 15 Dec 2021, Accepted 17 Feb 2022, Published online: 20 May 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. Sephttps://doi.org/10.1016/j.softx.2015.06.001
  • Acevedo, M. L., Alonso-Palomares, L., Bustamante, A., Gaggero, A., Paredes, F., & Cortés, C. P. (2021). Infectivity and immune escape of the new SARS-CoV-2 variant of interest Lambda. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.06.28.21259673
  • Ali, F., Kasry, A., & Amin, M. (2021). The new SARS-CoV-2 strain shows a stronger binding affinity to ACE2 due to N501Y mutant. Medicine in Drug Discovery, 10, 100086. Jun https://doi.org/10.1016/j.medidd.2021.100086
  • Bai, Y., Jiang, D., Lon, J. R., Chen, X., Hu, M., Lin, S., Chen, Z., Wang, X., Meng, Y., & Du, H. (2020). Comprehensive evolution and molecular characteristics of a large number of SARS-CoV-2 genomes reveal its epidemic trends. International Journal of Infectious Diseases: IJID: official Publication of the International Society for Infectious Diseases, 100, 164–173. Novhttps://doi.org/10.1016/j.ijid.2020.08.066
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Baum, A., Fulton, B. O., Wloga, E., Copin, R., Pascal, K. E., Russo, V., Giordano, S., Lanza, K., Negron, N., Ni, M., Wei, Y., Atwal, G. S., Murphy, A. J., Stahl, N., Yancopoulos, G. D., & Kyratsous, C. A. (2020). Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science (New York, N.Y.), 369(6506), 1014–1018. https://doi.org/10.1126/science.abd0831
  • Cagliani, R., Forni, D., Clerici, M., & Sironi, M. (2020). Computational inference of selection underlying the evolution of the novel coronavirus, severe acute respiratory syndrome coronavirus 2. Journal of Virology, 94(12), e00411-20. https://doi.org/10.1128/JVI.00411-20
  • Cai, Y., Zhang, J., Xiao, T., Peng, H., Sterling, S. M., Walsh, R. M., Rawson, S., Rits-Volloch, S., & Chen, B. Jr (2020). Distinct conformational states of SARS-CoV-2 spike protein. Science (New York, N.Y.), 369(6511), 1586–1592. https://doi.org/10.1126/science.abd4251
  • Capriotti, E., Fariselli, P., & Casadio, R. (2005). I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research, 33(Web Server issue), W306–10. https://doi.org/10.1093/nar/gki375
  • Chen, C., Boorla, V. S., Banerjee, D., Chowdhury, R., Cavener, V. S., & Nissly, R. H. (2021). Computational prediction of the effect of amino acid changes on the binding affinity between SARS-CoV-2 spike protein and the human ACE2 receptor. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.03.24.436885
  • Chen, Y., Lu, H., Zhang, N., Zhu, Z., Wang, S., & Li, M. (2020). PremPS: Predicting the impact of missense mutations on protein stability. PLoS Computational Biology, 16(12), e1008543. https://doi.org/10.1371/journal.pcbi.1008543
  • Choi, B., Choudhary, M. C., Regan, J., Sparks, J. A., Padera, R. F., Qiu, X., Solomon, I. H., Kuo, H.-H., Boucau, J., Bowman, K., Adhikari, U. D., Winkler, M. L., Mueller, A. A., Hsu, T. Y.-T., Desjardins, M., Baden, L. R., Chan, B. T., Walker, B. D., Lichterfeld, M., … Li, J. Z. (2020). Persistence and evolution of SARS-CoV-2 in an immunocompromised host. The New England Journal of Medicine, 383(23), 2291–2293. Dec 3https://doi.org/10.1056/NEJMc2031364
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: AnN⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Darriba, D., Posada, D., Kozlov, A. M., Stamatakis, A., Morel, B., & Flouri, T. (2020). ModelTest-NG: A new and scalable tool for the selection of dna and protein evolutionary models. Molecular Biology and Evolution, 37(1), 291–294. https://doi.org/10.1093/molbev/msz189
  • Davies, N. G., Jarvis, C. I., Edmunds, W. J., Jewell, N. P., Diaz-Ordaz, K., & Keogh, R. H. (2021). Increased mortality in community-tested cases of SARS-CoV-2 lineage B.1.1.7. Nature, 593(7858), 270–274. Mar 15https://doi.org/10.1038/s41586-021-03426-1
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. Oct 1https://doi.org/10.1002/jcc.10349
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). [20] VERIFY3D: Assessment of protein models with three-dimensional profiles. In: Methods in enzymology. Elsevier [cited 2021 Aug 14]. p. 396–404. https://doi.org/10.1016/s0076-6879(97)77022-8
  • Eisenhaber, F., Lijnzaad, P., Argos, P., Sander, C., & Scharf, M. (1995). The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. Journal of Computational Chemistry, 16(3), 273–284. Marhttps://doi.org/10.1002/jcc.540160303
  • Emam, M., Oweda, M., Antunes, A., & El-Hadidi, M. (2021). Positive selection as a key player for SARS-CoV-2 pathogenicity: Insights into ORF1ab, S and E genes. Virus Research, 302, 198472. https://doi.org/10.1016/j.virusres.2021.198472
  • Faria, N. R., Mellan, T. A., Whittaker, C., Claro, I. M., Candido, D. d S., Mishra, S., Crispim, M. A. E., Sales, F. C. S., Hawryluk, I., McCrone, J. T., Hulswit, R. J. G., Franco, L. A. M., Ramundo, M. S., de Jesus, J. G., Andrade, P. S., Coletti, T. M., Ferreira, G. M., Silva, C. A. M., Manuli, E. R., … Sabino, E. C. (2021). Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus. Science (New York, N.Y.), 372(6544), 815–821.
  • Fehr, A. R., & Perlman, S. (2015). Coronaviruses: An overview of their replication and pathogenesis. In Coronaviruses. New York: Springer. p. 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1
  • Ferrareze, P. A. G., Franceschi, V. B., Mayer A de, M., Caldana, G. D., Zimerman, R. A., & Thompson, C. E. (2021). E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 93, 104941. https://doi.org/10.1016/j.meegid.2021.104941
  • Fourati, S., Decousser, J.-W., Khouider, S., N'Debi, M., Demontant, V., Trawinski, E., Gourgeon, A., Gangloff, C., Destras, G., Bal, A., Josset, L., Soulier, A., Costa, Y., Gricourt, G., Lina, B., Lepeule, R., Pawlotsky, J.-M., & Rodriguez, C. (2021). May Novel SARS-CoV-2 Variant Derived from Clade 19B, France. Emerging Infectious Diseases, 27(5), 1540–1543. https://doi.org/10.3201/eid2705.210324
  • Frappier, V., & Najmanovich, R. J. (2014). A coarse-grained elastic network atom contact model and its use in the simulation of protein dynamics and the prediction of the effect of mutations. PLoS Computational Biology, 10(4), e1003569. https://doi.org/10.1371/journal.pcbi.1003569
  • Gan, H. H., Twaddle, A., Marchand, B., & Gunsalus, K. C. (2021). Structural modeling of the SARS-CoV-2 spike/human ACE2 complex interface can identify high-affinity variants associated with increased transmissibility. Journal of Molecular Biology, 433(15), 167051. https://doi.org/10.1016/j.jmb.2021.167051
  • Georgoulia, P. S., & Glykos, N. M. (2019). Molecular simulation of peptides coming of age: Accurate prediction of folding, dynamics and structures. Archives of Biochemistry and Biophysics, 664, 76–88. https://doi.org/10.1016/j.abb.2019.01.033
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Greaney, A. J., Starr, T. N., Gilchuk, P., Zost, S. J., Binshtein, E., Loes, A. N., Hilton, S. K., Huddleston, J., Eguia, R., Crawford, K. H. D., Dingens, A. S., Nargi, R. S., Sutton, R. E., Suryadevara, N., Rothlauf, P. W., Liu, Z., Whelan, S. P. J., Carnahan, R. H., Crowe, J. E., & Bloom, J. D. (2021). Complete mapping of mutations to the SARS-CoV-2 spike receptor-binding domain that escape antibody recognition. Cell Host & Microbe, 29(1), 44–57.e9. https://doi.org/10.1016/j.chom.2020.11.007
  • Groves, D. C., Rowland-Jones, S. L., & Angyal, A. (2021). The D614G mutations in the SARS-CoV-2 spike protein: Implications for viral infectivity, disease severity and vaccine design. Biochemical and Biophysical Research Communications, 538, 104–107. https://doi.org/10.1016/j.bbrc.2020.10.109
  • Gu, H., Chen, Q., Yang, G., He, L., Fan, H., Deng, Y.-Q., Wang, Y., Teng, Y., Zhao, Z., Cui, Y., Li, Y., Li, X.-F., Li, J., Zhang, N.-N., Yang, X., Chen, S., Guo, Y., Zhao, G., Wang, X., … Zhou, Y. (2020). Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science (New York, N.Y.), 369(6511), 1603–1607. https://doi.org/10.1126/science.abc4730
  • Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307–321. https://doi.org/10.1093/sysbio/syq010
  • Guo, K., Barrett, B. S., Mickens, K. L., Hasenkrug, K. J., & Santiago, M. L. (2021). Interferon resistance of emerging SARS-CoV-2 variants. Cold Spring Harbor Laboratory [cited 2021 Aug 14]. https://doi.org/10.1101/2021.03.20.436257
  • Harvey, W. T., Carabelli, A. M., Jackson, B., Gupta, R. K., Thomson, E. C., Harrison, E. M., Ludden, C., Reeve, R., Rambaut, A., Peacock, S. J., & Robertson, D. L. (2021). SARS-CoV-2 variants, spike mutations and immune escape. Nature Reviews. Microbiology, 19(7), 409–424. https://doi.org/10.1038/s41579-021-00573-0
  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518–522. https://doi.org/10.1093/molbev/msx281
  • Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N.-H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181(2), 271–280.e8. Aprhttps://doi.org/10.1016/j.cell.2020.02.052
  • Homeyer, N., & Gohlke, H. (2012). Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Molecular Informatics, 31(2), 114–122. https://doi.org/10.1002/minf.201100135
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/physreva.31.1695
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Islam, O. K., Al‐Emran, H. M., Hasan, M., Anwar, A., Jahid, M., & Hossain, M. (2021). Aug 9 Emergence of European and North American mutant variants of SARS-CoV-2 in South-East Asia . Transboundary and Emerging Diseases, 68(2), 824–832. https://doi.org/10.1111/tbed.13748
  • Jackson, C. B., Zhang, L., Farzan, M., & Choe, H. (2021). Functional importance of the D614G mutation in the SARS-CoV-2 spike protein. Biochemical and Biophysical Research Communications, 538, 108–115. https://doi.org/10.1016/j.bbrc.2020.11.026
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Katoh, K., Rozewicki, J., & Yamada, K. D. (2019). Sep 6 MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/bib/bbx108
  • Kemp, S. A., Collier, D. A., Datir, R. P., Ferreira, I. A. T. M., Gayed, S., Jahun, A., Hosmillo, M., Rees-Spear, C., Mlcochova, P., Lumb, I. U., Roberts, D. J., Chandra, A., Temperton, N., Sharrocks, K., Blane, E., Modis, Y., Leigh, K. E., Briggs, J. A. G., van Gils, M. J., … Gupta, R. K. (2021). SARS-CoV-2 evolution during treatment of chronic infection. Nature, 592(7853), 277–282. https://doi.org/10.1038/s41586-021-03291-y
  • Kim, Y.-M., & Shin, E.-C. (2021). Type I and III interferon responses in SARS-CoV-2 infection. Experimental & Molecular Medicine, 53(5), 750–760. https://doi.org/10.1038/s12276-021-00592-0
  • Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., Hengartner, N., Giorgi, E. E., Bhattacharya, T., Foley, B., Hastie, K. M., Parker, M. D., Partridge, D. G., Evans, C. M., Freeman, T. M., de Silva, T. I., McDanal, C., Perez, L. G., Tang, H., … Montefiori, D. C. (2020). Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812–827.e19. https://doi.org/10.1016/j.cell.2020.06.043
  • Kosakovsky Pond, S. L., & Frost, S. D. W. (2005). Not so different after all: A comparison of methods for detecting amino acid sites under selection. Molecular Biology and Evolution, 22(5), 1208–1222. https://doi.org/10.1093/molbev/msi105
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Laimer, J., Hiebl-Flach, J., Lengauer, D., & Lackner, P. (2016). MAESTROweb: A web server for structure-based protein stability prediction. Bioinformatics (Oxford, England), 32(9), 1414–1416. https://doi.org/10.1093/bioinformatics/btv769
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Liu, D. X., Fung, T. S., Chong, K. K.-L., Shukla, A., & Hilgenfeld, R. (2014). Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Research, 109, 97–109. https://doi.org/10.1016/j.antiviral.2014.06.013
  • MacLean, O. A., Lytras, S., Weaver, S., Singer, J. B., Boni, M. F., Lemey, P., Kosakovsky Pond, S. L., & Robertson, D. L. (2021). Natural selection in the evolution of SARS-CoV-2 in bats created a generalist virus and highly capable human pathogen. PLoS Biology, 19(3), e3001115. https://doi.org/10.1371/journal.pbio.3001115
  • Martin, D. P., Weaver, S., Tegally, H., San, E. J., Shank, S. D., & Wilkinson, E. (2021). The emergence and ongoing convergent evolution of the N501Y lineages coincides with a major global shift in the SARS-CoV-2 selective landscape. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.02.23.21252268
  • Meng, B., Kemp, S. A., Papa, G., Datir, R., Ferreira, I. A. T. M., Marelli, S., Harvey, W. T., Lytras, S., Mohamed, A., Gallo, G., Thakur, N., Collier, D. A., Mlcochova, P., Duncan, L. M., Carabelli, A. M., Kenyon, J. C., Lever, A. M., De Marco, A., Saliba, C., … Gupta, R. K. (2021). Recurrent emergence of SARS-CoV-2 spike deletion H69/V70 and its role in the Alpha variant B.1.1.7. Cell Reports, 35(13), 109292. https://doi.org/10.1016/j.celrep.2021.109292
  • Murrell, B., Moola, S., Mabona, A., Weighill, T., Sheward, D., Kosakovsky Pond, S. L., & Scheffler, K. (2013). FUBAR: A fast, unconstrained Bayesian AppRoximation for inferring selection. Molecular Biology and Evolution, 30(5), 1196–1205. 18https://doi.org/10.1093/molbev/mst030
  • Nelson, G., Buzko, O., Spilman, P., Niazi, K., Rabizadeh, S., & Soon-Shiong, P. (2021). Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.01.13.426558
  • Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
  • Nosé, S. (1984). A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics, 81(1), 511–519. Julhttps://doi.org/10.1063/1.447334
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pereson, M. J., Mojsiejczuk, L., Martínez, A. P., Flichman, D. M., Garcia, G. H., & Di Lello, F. A. (2021). Oct 8 Phylogenetic analysis of SARS-CoV-2 in the first few months since its emergence. Journal of Medical Virology, 93(3), 1722–1731. https://doi.org/10.1002/jmv.26545
  • Plante, J. A., Liu, Y., Liu, J., Xia, H., Johnson, B. A., Lokugamage, K. G., Zhang, X., Muruato, A. E., Zou, J., Fontes-Garfias, C. R., Mirchandani, D., Scharton, D., Bilello, J. P., Ku, Z., An, Z., Kalveram, B., Freiberg, A. N., Menachery, V. D., Xie, X., … Shi, P.-Y. (2021). Oct 26 Spike mutation D614G alters SARS-CoV-2 fitness. Nature, 592(7852), 116–121. https://doi.org/10.1038/s41586-020-2895-3
  • Poon, A. F. Y., Lewis, F. I., Pond, S. L. K., & Frost, S. D. W. (2007). An evolutionary-network model reveals stratified interactions in the V3 loop of the HIV-1 envelope. PLoS Computational Biology, 3(11), e231. https://doi.org/10.1371/journal.pcbi.0030231
  • Pucci, F., & Rooman, M. (2021). Prediction and evolution of the molecular fitness of SARS-CoV-2 variants: Introducing SpikePro. Viruses, 13(5), 935. https://doi.org/10.3390/v13050935
  • Qu, X.-X., Hao, P., Song, X.-J., Jiang, S.-M., Liu, Y.-X., Wang, P.-G., Rao, X., Song, H.-D., Wang, S.-Y., Zuo, Y., Zheng, A.-H., Luo, M., Wang, H.-L., Deng, F., Wang, H.-Z., Hu, Z.-H., Ding, M.-X., Zhao, G.-P., & Deng, H.-K. (2005). Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. The Journal of Biological Chemistry, 280(33), 29588–29595. https://doi.org/10.1074/jbc.M500662200
  • Rambaut, A. (2020). Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. Virological. Available from: https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
  • Rathnasinghe, R., Jangra, S., Cupic, A., Martínez-Romero, C., Mulder, L. C. F., & Kehrer, T. (2021). The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and post-vaccination human sera. Cold Spring Harbor Laboratory. https://doi.org/10.1101/2021.01.19.21249592
  • Rifai, E. A., van Dijk, M., Vermeulen, N. P. E., Yanuar, A., & Geerke, D. P. (2019). A comparative linear interaction energy and MM/PBSA study on SIRT1-ligand binding free energy calculation. Journal of Chemical Information and Modeling, 59(9), 4018–4033. Available from https://doi.org/10.1021/acs.jcim.9b00609
  • Rodrigues, C. H., Pires, D. E., & Ascher, D. B. (2018). DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Research, 46(W1), W350–5. https://doi.org/10.1093/nar/gky300
  • Sabino, E. C., Buss, L. F., Carvalho, M. P. S., Prete, C. A., Crispim, M. A. E., Fraiji, N. A., Pereira, R. H. M., Parag, K. V., da Silva Peixoto, P., Kraemer, M. U. G., Oikawa, M. K., Salomon, T., Cucunuba, Z. M., Castro, M. C., de Souza Santos, A. A., Nascimento, V. H., Pereira, H. S., Ferguson, N. M., Pybus, O. G., … Faria, N. R. (2021). Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. The Lancet, 397(10273), 452–455. https://doi.org/10.1016/S0140-6736(21)00183-5
  • Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: An online force field. Nucleic Acids Research, 33(Web Server issue), W382–8. 1https://doi.org/10.1093/nar/gki387
  • Shindyalov, IN, Kolchanov, N. A., & Sander, C. H. (1994). Can three-dimensional contacts in protein structures be predicted by analysis of correlated mutations? Protein Engineering, Design and Selection, 7(3), 349–358. https://doi.org/10.1093/protein/7.3.349
  • Starr, T. N., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K. H. D., Dingens, A. S., Navarro, M. J., Bowen, J. E., Tortorici, M. A., Walls, A. C., King, N. P., Veesler, D., & Bloom, J. D. (2020). Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell, 182(5), 1295–1310. https://doi.org/10.1016/j.cell.2020.08.012
  • Studer, R. A., Christin, P.-A., Williams, M. A., & Orengo, C. A. (2014). Stability-activity tradeoffs constrain the adaptive evolution of RubisCO. Proceedings of the National Academy of Sciences, 111(6), 2223–2228. https://doi.org/10.1073/pnas.1310811111
  • Tang, J. W., Tambyah, P. A., & Hui, D. S. (2021). Apr Emergence of a new SARS-CoV-2 variant in the UK. Journal of Infection, 82(4), e27–8. https://doi.org/10.1016/j.jinf.2020.12.024
  • Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E. J., Msomi, N., Mlisana, K., von Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A. J., Engelbrecht, S., Van Zyl, G., … de Oliveira, T. (2021). Detection of a SARS-CoV-2 variant of concern in South Africa. Nature, 592(7854), 438–443. https://doi.org/10.1038/s41586-021-03402-9
  • Van Egeren, D., Novokhodko, A., Stoddard, M., Tran, U., Zetter, B., Rogers, M., Pentelute, B. L., Carlson, J. M., Hixon, M., Joseph-McCarthy, D., & Chakravarty, A. (2021). Risk of rapid evolutionary escape from biomedical interventions targeting SARS-CoV-2 spike protein. PLoS One, 16(4), e0250780. https://doi.org/10.1371/journal.pone.0250780
  • Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 181(2), 281–292.e6. https://doi.org/10.1016/j.cell.2020.02.058
  • Wang, R., Chen, J., Gao, K., & Wei, G.-W. (2021). Vaccine-escape and fast-growing mutations in the United Kingdom, the United States, Singapore, Spain, India, and other COVID-19-devastated countries. Genomics, 113(4), 2158–2170. https://doi.org/10.1016/j.ygeno.2021.05.006
  • Washington, N. L., Gangavarapu, K., Zeller, M., Bolze, A., Cirulli, E. T., Schiabor Barrett, K. M., Larsen, B. B., Anderson, C., White, S., Cassens, T., Jacobs, S., Levan, G., Nguyen, J., Ramirez, J. M., Rivera-Garcia, C., Sandoval, E., Wang, X., Wong, D., Spencer, E., … Andersen, K. G. (2021). Emergence and rapid transmission of SARS-CoV-2 B.1.1.7 in the United States. Cell, 184(10), 2587–2594.e7. https://doi.org/10.1016/j.cell.2021.03.052
  • Weisblum, Y., Schmidt, F., Zhang, F., DaSilva, J., Poston, D., Lorenzi, J. C., Muecksch, F., Rutkowska, M., Hoffmann, H.-H., Michailidis, E., Gaebler, C., Agudelo, M., Cho, A., Wang, Z., Gazumyan, A., Cipolla, M., Luchsinger, L., Hillyer, C. D., Caskey, M., … Bieniasz, P. D. (2020). Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife, 9, e61312. https://doi.org/10.7554/eLife.61312
  • Weissman, D., Alameh, M.-G., de Silva, T., Collini, P., Hornsby, H., Brown, R., LaBranche, C. C., Edwards, R. J., Sutherland, L., Santra, S., Mansouri, K., Gobeil, S., McDanal, C., Pardi, N., Hengartner, N., Lin, P. J. C., Tam, Y., Shaw, P. A., Lewis, M. G., … Montefiori, D. C. (2021). D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host & Microbe, 29(1), 23–31.e4. https://doi.org/10.1016/j.chom.2020.11.012
  • Webb, B., & Sali, A. (2016). Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics, 54(1), 5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3
  • Winger, A., & Caspari, T. (2021). The spike of concern—The novel variants of SARS-CoV-2. Viruses, 13(6), 1002. https://doi.org/10.3390/v13061002
  • Yuan, M., Wu, N. C., Zhu, X., Lee, C.-C D., So, R. T. Y., Lv, H., Mok, C. K. P., & Wilson, I. A. (2020). A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science (New York, N.Y.), 368(6491), 630–633. https://doi.org/10.1126/science.abb7269
  • Yurkovetskiy, L., Wang, X., Pascal, K. E., Tomkins-Tinch, C., Nyalile, T. P., Wang, Y., Baum, A., Diehl, W. E., Dauphin, A., Carbone, C., Veinotte, K., Egri, S. B., Schaffner, S. F., Lemieux, J. E., Munro, J. B., Rafique, A., Barve, A., Sabeti, P. C., Kyratsous, C. A., … Luban, J. (2020). Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell, 183(3), 739–751.e8. https://doi.org/10.1016/j.cell.2020.09.032
  • Zhou, D., Dejnirattisai, W., Supasa, P., Liu, C., Mentzer, A. J., Ginn, H. M., Zhao, Y., Duyvesteyn, H. M. E., Tuekprakhon, A., Nutalai, R., Wang, B., Paesen, G. C., Lopez-Camacho, C., Slon-Campos, J., Hallis, B., Coombes, N., Bewley, K., Charlton, S., Walter, T. S., … Screaton, G. R. (2021). Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell, 184(9), 2348–2361.e6. https://doi.org/10.1016/j.cell.2021.02.037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.