327
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Copper(II) Schiff base complex derived from salen ligand: structural investigation, Hirshfeld surface analysis, anticancer and anti-SARS-CoV-2

& ORCID Icon
Pages 4957-4980 | Received 28 Jan 2022, Accepted 04 May 2022, Published online: 23 May 2022

References

  • Aallaei, M., Molaakbari, E., Mostafavi, P., Salarizadeh, N., Maleksah, R. E., & Afzali, D. (2022). Investigation of Cu metal nanoparticles with different morphologies to inhibit SARS-CoV-2 main protease and spike glycoprotein using molecular docking and dynamics simulation. Journal of Molecular Structure, 1253, 132301. https://doi.org/10.1016/j.molstruc.2021.132301
  • Ali, A., Sepay, N., Afzal, M., Ayim Sepay, N., Alarifi, A., Shahid, M., & Ahmad, M. (2021). Molecular designing, crystal structure determination and in silico screening of copper(II) complexes bearing 8-hydroxyquinoline derivatives as anti-COVID-19. Bioorganic Chemistry, 110, 104772. https://doi.org/10.1016/j.bioorg.2021.104772
  • Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C., & Garry, R. F. (2020). The proximal origin of SARS-CoV-2. Nature Medicine, 26(4), 450–452. https://doi.org/10.1038/s41591-020-0820-9
  • Andreou, A., Trantza, S., Filippou, D., Sipsas, N., & Tsiodras, S. (2020). COVID-19: The potential role of copper and N-acetylcysteine (NAC) in a combination of candidate antiviral treatments against SARS-CoV-2. In Vivo (Athens, Greece), 34(3 Suppl), 1567–1588. https://doi.org/10.21873/invivo.11946
  • Banti, C. N., Kourkoumelis, N., Hatzidimitriou, A. G., Antoniadou, I., Dimou, A., Rallis, M., Hoffmann, A., Schmidtke, M., McGuire, K., Busath, D., Kolocouris, A., & Hadjikakou, S. K. (2020). Amantadine copper(II) chloride conjugate with possible implementation in influenza virus inhibition. Polyhedron, 185, 114590. https://doi.org/10.1016/j.poly.2020.114590
  • Benucci, M., Giannasi, G., Cecchini, P., Gobbi, F. L., Damiani, A., Grossi, V., Infantino, M., & Manfredi, M. (2020). Computational studies of selected transition metal complexes as potential drug candidates against the SARS-CoV-2 virus. ChemistrySelect, 6, 7429–8370.
  • Bergamini, F. R., Nunes, J. H., de Carvalho, M. A., Ribeiro, M. A., de Paiva, P. P., Banzato, T. P., Ruiz, A. L., de Carvalho, J. E., Lustri, W. R., Martins, D. O., da Costa Ferreira, A. M., & Corbi, P. P. (2019). Polynuclear copper(II) complexes with nalidixic acid hydrazones: Antiproliferative activity and selectivity assessment over a panel of tumor cells. Inorganica Chimica Acta, 484, 491–502. https://doi.org/10.1016/j.ica.2018.09.084
  • Bhola, Y. O., Socha, B. N., Pandya, S. B., Dubey, R. P., & Patel, M. K. (2019). Molecular structure, DFT studies, Hirshfeld surface analysis, energy frameworks, and molecular docking studies of novel (E)-1-(4-chlorophenyl)-5-methyl-N′-((3-methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl) methylene)-1H-1, 2, 3-triazole-4-carbohydrazide. Mol. Crystal & Liquid Crystals, 692(1), 83–93. https://doi.org/10.1080/15421406.2020.1721946
  • Biswas, S., & Ghosh, A. (2012). J. Mol. Struct., 1019, 32–36.
  • Bradley, D. (2020). Nanotech for improved wound healing. Materials Today, 401, 3. 69–7021. https://doi.org/10.1016/j.mattod.2020.09.017
  • Brandenburg, K. (2014). Diamond version 3.2k. Crystal Impact GbR. Germany. http://www.crystalimpact.com/diamond
  • Cartos, A. A., & Jiniga, J. M. (2020). Diagn. Microb. Infe. Disease, 98(4), 115176. https://doi.org/10.1016/j.diagmicrobio.2020.115176.
  • Choudhry, N., Zhao, X., Xu, D., Zanin, M., Chen, W., Yang, Z., & Chen, J. (2020). J. Med. Chem., 63(29), 13205–13227.
  • Coikmak, D., Cakran, S., Yukinkaya, S., & Demetgul, C. (2018). J. Electroanal. Chem. 808, 65–74. https://doi.org/10.1016/J.Jelechem.2017.11.058.
  • Cozzi, P. G. (2004). Chem. Soc. Rev., 33, 410–421.
  • Dennington, R. D., Keith, T. A., & Millam, J. M. (2016). Gauss view, version 6.0. 16. Semichem. Inc.
  • Duan, R., Ma, X., Huang, M., Wang, M., & Wu, Q. (2022). Z. Kristallogr. N. Cryst. Struct., 237(10), 79–80.
  • Dutta, S., Biswas, P., Florke, U., & Nag, K. (2010). Structure, stereochemistry, and physico-chemical properties of trinuclear and dinuclear metal(II) complexes of a phenol-based tetrapodal Schiff base ligand. Inorganic Chemistry, 49(16), 7382–7400. https://doi.org/10.1021/ic100666t
  • Erxleben, A. (2018). Inorg. Chim. Acta. 472, 40–57. https://doi.org/10.1016/j.ica.2017.06.060
  • Farrugia, L. J. (2012). WinGX and ORTEP for windows : An update. Journal of Applied Crystallography, 45(4), 849–854. https://doi.org/10.1107/S0021889812029111
  • Finelli, A., Herault, N., Crochet, A., & Fromm, K. M. (2018). Threading Salen-type Cu- and Ni-complexes into one-dimensional coordination polymers: Solution versus solid state and the size effect of the alkali metal ion. Cryst. Growth Des, 18(2), 1215–1226. https://doi.org/10.1021/acs.cgd.7b01769
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Li, X. (2016). Gaussian 16. Wallingford, CT: Gaussian, Inc.
  • Fu, L., Ye, F., Feng, Y., Yu, F., Wang, Q., WU, Y., Zhao, C., Sun, H., Huang, B., Niu, P., Song, H., Shi, Y., Li, X., Tan, W., Qi, J., & Gao, G. F. (2020). Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nature Communications, 11(1), 4417–4417. https://doi.org/10.1038/s41467-020-18233-x
  • Garza-Lopez, R. A., Kozak, J. J., & Gray, H. B. (2020). ChemRxiv. https://doi.org/10.26434/chemrxiv.12673436.
  • Gong, X., Ge, Y. -Y., Fang, M., Gu, Z.-G., Zheng, S.-R., Li, W.-S., Hu, S.-J., Li, S.-B., & Peng Cai, Y. Cryst. Eng. Comm. 2011, 3, 6911–6915.
  • Gordon, N. A., McGuire, K. L., Wallentine, S. K., Mohl, G. A., Lynch, J. D., Harrison, R. G., & Busath, D. D. (2017). Divalent copper complexes as influenza A M2 inhibitors. Antiviral Research, 147, 100–106. https://doi.org/10.1016/j.antiviral.2017.10.009
  • Haikarainen, A., Sipila, J., Pietikainen, P., Pajunen, A., & Mutikainen, I. (2001). Synthesis and characterization of bulky salen-type complexes of Co, Cu, Fe, Mn and Ni with amphiphilic solubility properties. Journal of the Chemical Society, Dalton Transactions, (7), 991–995. https://doi.org/10.1039/b008167l
  • Hakami, M., Bouricha, E., Kandoussi, I., Harti, J. E., & Ibrahimi, A. (2020). Bioinformation, 16, 301–305.
  • Haribabu, J., Srividya, S., Mahendiran, D., Gayathri, D., Venkatramu, V., Bhuvanesh, N., & Karvembu, R. (2020). Inorg. Chem., 59, 17109–17122.
  • Hartman, B. J., & Tomasz, A. (1984). Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus. Journal of Bacteriology, 158(2), 513–516. https://doi.org/10.1128/jb.158.2.513-516.1984
  • Hussain, A., Alajmi, M. F., Rehman, M. J., Amir, S., Hussain, F. M., Alsalme, A., Siddiqui, M. A., Alkhedhairy, A. A., & Khan, R. A. (2019). Copper(II) complexes as potential anticancer and Nonsteroidal anti-inflammatory agents: In vitro and in vivo studies. Scientific Reports, 9(1), 5237. https://doi.org/10.1038/s41598-019-41063-x
  • Jin Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., …, Yang, H. (2020). Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582, 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Kargar, H., Kia, R., Abbasian, S., & Tahir, M. N. (2012). Acta Crystallogr., E68, m182.
  • Kargar, H., Kia, R., Haghshenas, M., & Tahir, M. N. (2014). Zeitschrift Für Anorganische Und Allgemeine Chemie., 640,2062.
  • Karmakar, M., & Chattopadhyay, S. (2019). A comprehensive overview of the orientation of tetradentate N2O2 donor Schiff base ligands in octahedral complexes of trivalent 3d metals. J. Mol. Struct., 1186, 155–186.
  • Knowles, R. R., Lin, S., & Jacobsen, E. N. (2010). Enantioselective thiourea-catalyzed cationic polycyclizations. Journal of the American Chemical Society, 132(14), 5030–5032. https://doi.org/10.1021/ja101256v
  • Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1(1-6), 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Kotain, A., Kamat, V., Naik, K., Kokare, D. G., Kumara, K., Nemtur, K. L., Kumbar, V., Bhat, K., & Revankar, V. K. (2021). Bioorg. Chem, 112, 104962.
  • Kozak, J. J., Gray, H. B., & Garza-Lopez, R. A. (2020). Structural stability of the SARS-CoV-2 main protease: Can metal ions affect function? J. Inorg. Biochem, 211, 111179. https://doi.org/10.1016/j.jiorgbio.2020.111179
  • Kumar, S. m., Lakshminarayana, B. N., Nagaraju, S., Ananda, S., Manjunath, B. C., Lokanath, N. K., & Byrappa, K. (2018). J. Mol. Struct, 1173, 300–306.
  • Kumar, S., & Choudhary, M. (2021). Structural and theoretical investigations, Hirshfeld surface analysis and anti-SARS CoV-2 of nickel (II) coordination complex. J. Biomol. Struct, Dy, 1–21. doihttps://doi.org/10.1080/07391102.2021.2006089
  • Kumara, K., Kumar, A. D., Kumar, K. A., & Lokanath, N. K. (2018). Chem. Data Collect, 13, 40–59.
  • Levy, N., Bruneau, J.-M., Le Rouzic, E., Bonnard, D., Le Strat, F., Caravano, A., Chevreuil, F., Barbion, J., Chasset, S., Ledoussal, B., Moreau, F., & Ruff, M. (2019). Structural basis for E. coli penicillin binding protein (PBP) 2 inhibition, a platform for drug design. Journal of Medicinal Chemistry, 62(9), 4742–4754. https://doi.org/10.1021/acs.jmedchem.9b00338
  • Liu, J., Cao, R., Xu, M., Wang, X., Zhang, H., Hu, H., Li, Y., Hu, Z., Zhong, W., & Wang, M. (2020). Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discovery, 6(1). https://doi.org/10.1038/s41421-020-0156-0
  • Mackenzie, C. F., Spackman, P. R., Jayatilaka, D., & Spackman, M. A. (2017). CrystalExplorer model energies and energy frameworks: extension to metal coordination compounds, organic salts, solvates and open-shell systems. IUCrJ, 4(Pt 5), 575–587. https://doi.org/10.1107/S205225251700848X
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M., & van de Streek, J. (2006). Mercury: Visualization and analysis of crystal structures. Journal of Applied Crystallography, 39(3), 453–457. https://doi.org/10.1107/S002188980600731X
  • Mahadevi, A. S., & Sastry, G. N. (2013). Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chemical Reviews, 113(3), 2100–2138. https://doi.org/10.1021/cr300222d
  • Mahapatra, P., Ghosh, S., Giri, S., Rane, V., Kadam, R., Drew, M. G. B., & Ghosh, A. (2017). Subtle structural changes in (CuIIL)2MnII complexes to induce heterometallic cooperative catalytic oxidase activities on phenolic substrates (H2L = salen type unsymmetrical Schiff base). Inorganic Chemistry, 56(9), 5105–1268.
  • Mahendiran, D., Amuthakala, S., Bhuvanesh, N. S. P., Kumar, R. S., & Rahiman, A. K. (2018). Copper complexes as prospective anticancer agents: In vitro and in vivo evaluation, selective targeting of cancer cells by DNA damage and S phase arrest. RSC Advances, 8(30), 16973–16990. 8https://doi.org/10.1039/C8RA00954F
  • Mahesha, H. M., Krishnegowda, C. S., Karthik, P. J., Kudigana, P., & Mallu, N. L. (2020). Polyhedron, 185, 114571. https://doi.org/10.1016/j.poly.2020.114571
  • Majumdar, D., Dey, S., Das, D., Singh, D. K., Das, S., Bankura, K., & Mishra, D. (2019). Heterometallic Zn(II)-K(I) complex with salen-type Schiff-base ligand: Synthesis, crystal structure, solid-state photoluminescent property and theoretical study. J. Mol. Struct, 1185, 112–120. https://doi.org/10.1016/j.molstruc.2019.02.092
  • Mello, L. D. S., da Cruz, Jr., J. W., Bucalon, D. H., Romera, S., dos Santos, M. P., Liao, L. M., Vizotto, L., Martins, F. T., & Dockal, E. R. J. Mol. Struct. 2021, 1228, 129656. https://doi.org/10.1016/j.molstruc.2019.02.091
  • Mohan, B., & Choudhary, M. (2021). Synthesis, crystal structure, computational study and anti-virus effect of mixed ligand copper (II) complex with ONS donor Schiff base and 1,10-phenanthroline. Journal of Molecular Structure, 1246, 131246. https://doi.org/10.1016/j.molstruc.2021.131246
  • Mohan, B., Muhammad, S., Al-Sehemi, A. G., Bharti, S., Kumar, S., & Choudhary, M. (2021). Synthesis of copper(II) coordination complex, its molecular docking and computational exploration for novel functional properties: A dual approach. Chemistry Select, 6(4), 738–745. https://doi.org/10.1002/slct.202003738
  • Mohan, N., Sreejith, S. S., & Kurup, M. P. (2019a). Investigation on catecholase activity of salen Co(III) octahedral complexes. Polyhedron, 173, 114129. https://doi.org/10.1016/j.poly.2019.114129
  • Mohan, N., Sreejth, S. S., Kuttipprath, V., Keloth, C., & Kurup, M. R. P. (2019b). Appl. Organometallic Chem. 33(9). https://doi.org/10.1002/aoc.4900
  • Morris, G., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nbili, W., Kaabi, K., Lefebvre, F., Fujita, W., Jelsch, C., & Nasr, C. b. (2018). A Hirshfeld surface analysis, crystal structure, and physicochemical studies of a new Cu(II) complex with the 1,10-phenanthroline ligand. J. Coord. Chem, 71(16–18), 2526–2539. https://doi.org/10.1080/00958972.2018.1489125
  • Onawole, A. T., Sulaiman, K. O., Kolapo, T. U., Akinde, F. O., & Adegoke, R. O. (2020). COVID-19: CADD to the rescue. Virus Research, 285, 198022. https://doi.org/10.1016/j.virusres.2020.198022
  • Pal, M., Musib, D., Zade, A. J., Chowdhury, N., & Roy, M. (2021). Chemistry Select, 6, 7429–7435. https://doi.org/10.1002/slct.202101852
  • Pal, M., Musib, D., & Roy, M. (2021). New J. Chem., 45, 1924–1933. https://doi.org/10.1039/D0NJ04578K
  • Parr, R. G., Szentpály, L. v., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
  • Patel, A. K., Jadeja, R. N., Roy, H., Patel, R. N., Patel, S. K., Butcher, R. J., Cortijo, M., & Herrero, S. (2020a). Copper(II) hydrazone complexes with different nuclearities and geometries: Synthesis, structural characterization, antioxidant SOD activity and antiproliferative properties. Polyhedron, 186, 114624. https://doi.org/10.1016/j.poly.2020.114624
  • Patel, R. N., Patel, S. K., Kumhar, D., Patel, N., Patel, A. K., Jadeja, R. N., Patel, N., Butcher, R. J., Cortijo, M., & Herrero, S. (2020b). Two new copper(II) binuclear complexes with 2-[(E)-(pyridine-2yl-hydrazono)methyl]phenol: Molecular structures, quantum chemical calculations, cryomagnetic properties and catalytic activity. Polyhedron, 188, 114687. https://doi.org/10.1016/j.poly.2020.114687
  • Patel, R. N., Singh, Y., Singh, Y. P., & Butcher, R. J. (2016). Synthesis, crystal structure and DFT calculations of octahedral nickel(II) complexes derived from N ′-[( E )-phenyl(pyridin-2-yl)methylidene]benzohydrazide. J. Coord. Chem, 69(15), 2377–2390. https://doi.org/10.1080/00958972.2016.1189543
  • Pfeiffer, P., Breith, E., Lubbe, E., Tsumaki, T., & Liebigs, J. (1933). Tricyclische orthokondensierte nebenvalenzringe. Justus Liebig's Annalen Der Chemie, 503(1), 84–103. https://doi.org/10.1002/jlac.19335030106
  • Phongpaichit, S., Nikom, J., Rungjindamai, N., Sakayaroj, J., Hutadilok-Towatana, N., Rukachaisirikul, V., & Kirtikara, K. (2007). Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunology and Medical Microbiology, 51(3), 517–525. https://doi.org/10.1111/j.1574-695X.2007.00331.x
  • Raha, S., Mallick, R., Basak, S., & Duttaroy, A. K. (2020). Is copper beneficial for COVID-19 patients? Med Hypotheses, 142, 109814. https://doi.org/10.1016/j.mehy.2020.109814
  • Ramachandran, G. N., & Sasisekharan, V. (1968). Adv. Protein Chem, 23, 283–437.
  • Robinson, J., Arjunan, A., Baroutaji, A., Marti, M., Molina, A. T., Aroca, A. S., & Pollard, A. (2021). Additive manufacturing of anti-SARS-CoV-2 copper-tungsten-silver alloy. Rapid Prototyping Journal, 27(10), 1831–1849. https://doi.org/10.1108/RPJ-06-2021-0131
  • Robinson, S. G., Wu, X., Jiang, B., Sigman, M. S., & Lin, S. (2020). J. Am. Chem. Soc. Doi: https://doi.org/10.1021/jacs.0c07128.
  • Sang, P., Tian, S. H., Meng.,Z. H., & Yang, L. Q. (2020). RSC Adv. 15775–115783 https://doi.org/10.1016/j.jinorgbio.2020.111179
  • Sater, M. A. E., Jaber, N., & Schulz, E. (2019). Chem. Cat. Chem. https://doi.org/10.1002/cctc.201900557.
  • Seshan, G., Kanagasabai, S., Ananthasri, S., Kannappan, B., Suvitha, A., Jaimohan, S. M., Kanagaraj, S., & Kothandn, G. (2020). J. Biomol. Struct. Dy. https://doi.org/10.1080/07391102.2020.1804452
  • Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica. Section C, Structural Chemistry, 71(Pt 1), 3–8. https://doi.org/10.1107/S2053229614024218
  • Shi, Y., Shuai, L., Wen, Z., Wang, C., Yan, Y., Jiao, Z., Guo, F., Fu, Z. F., Chen, H., Bu, Z., & Peng, G. (2021). The preclinical inhibitor GS441524 in combination with GC376 efficaciously inhibited the proliferation of SARS-CoV-2 in the mouse respiratory tract. Emerging Microbes & Infections, 10(1), 481–492. https://doi.org/10.1080/22221751.2021.1899770
  • Spackman, M. A., & Jayatilaka, D. (2009). Hirshfeld surface analysis. Cryst. Eng. Comm, 11(1), 19–32. https://doi.org/10.1039/B818330A
  • Spackman, M. A., & McKinnon, J. J. (2002). Fingerprinting intermolecular interactions in molecular crystals. Cryst. Eng. Comm, 4(66), 378–392. https://doi.org/10.1039/B203191B
  • Spackman, M. A., & Yayatilaka, D. (2009). Crys. Eng. Comm., 11, 19–22.
  • Spek, A. L. (2003). Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 36(1), 7–13. https://doi.org/10.1107/S0021889802022112
  • Spratt, B. G. (1975). Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2999–3003. https://doi.org/10.1073/pnas.72.8.2999
  • Sreejith, S. S., Mohan, N., & Kurup, M. R. P. (2017). Experimental and theoretical investigations on Pd(II) host-guest compound: Deciphering the structural and electronic features of a potential bioactive complex. J. Mol. Struct, 1145, 170–183. https://doi.org/10.1016/j.molstruc.2017.05.068
  • Systemes, D. (2020). Biovia, discovery studio visualizer, release 2019. Dassault Systemes.
  • Tang, B., Bragazzi, N. L., Li, Q., Tang, S., Xiao, Y., & Wu, J. (2020). Infect. Dis. Model, 5, 248–255. https://doi.org/10.1016/j.idm.2020.02.001
  • Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4, 297–306.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Turner, M. J., Mckinnon, J.J., Wolff, S.K., Grimwood, D.J., Spackman, P.R., Jayati-laka, D., & Spackman, M.A. (2017). Crystal Explorer, 17. The University of Western Australia. https://hirshfeldsurface.net
  • Uddin, M. N., Amin, M. S., Rahman, M. S., Khandaker, S., Shumi, W., Rahman, M. A., & Rahman, S. M. (2021). Appl. Organomet. Chem., 35(1). https://doi.org/10.1002/aoc.6067
  • Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., Hu, Z., Zhong, W., & Xiao, G. (2020). Cell Res., 30, 269–271.
  • Wu, H., Bai, Y., Zhang, Y., Pan, G., Kong, J., Shi, F., & Wang, X. (2014). Z. Anorg. Allg. Chem., 640, 2062–2071. https://doi.org/10.1002/zaac.201400109
  • Xiu, X., Puskar, N. L., Shanata, J. A. P., Lester, H. A., & Dougherty, D. A. (2009). Nicotine binding to brain receptors requires a strong cation-pi interaction. Nature, 458(7237), 534–537. https://doi.org/10.1038/nature07768
  • Yang, Y., Weaver, M. N., & Merz, Jr., K. M. (2009). J. Phys. Chem. A., 113, 9843–9851. https://doi.org/10.1021/ct700248k

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.