190
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evidence for a high pKa of an aspartic acid residue in the active site of CALB by a fully atomistic multiscale approach

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 4949-4956 | Received 22 Feb 2022, Accepted 03 May 2022, Published online: 20 May 2022

References

  • Adamo, C., & Jacquemin, D. (2013). The calculations of excited-state properties with time-dependent density functional theory. Chemical Society Reviews, 42(3), 845–856.
  • Alexov, E., Mehler, E. L., Baker, N., Baptista, A. M., Huang, Y., Milletti, F., Nielsen, J. E., Farrell, D., Carstensen, T., Olsson, M. H. M., Shen, J. K., Warwicker, J., Williams, S., & Word, J. M. (2011). Progress in the prediction of pka values in proteins. Proteins: Structure, Function, and Bioinformatics, 79(12), 3260–3275. https://doi.org/10.1002/prot.23189
  • Amadei, A., D’Abramo, M., Daidone, I., D’Alessandro, M., Nola, A. D., & Aschi, M. (2007). Statistical mechanical modelling of chemical reactions in complex systems: The kinetics of the haem carbon monoxide binding-unbinding reaction in myoglobin. Theoretical Chemistry Accounts, 117(5-6), 637–647. https://doi.org/10.1007/s00214-006-0197-y
  • Amadei, A., Daidone, I., & Aschi, M. (2012). A general theoretical model for electron transfer reactions in complex systems. Physical Chemistry Chemical Physics : PCCP, 14(4), 1360–13770.
  • Amadei, A., Daidone, I., Nola, A. D., & Aschi, M. (2010). Theoretical-computational modelling of infrared spectra in peptides and proteins: A new frontier for combined theoretical-experimental investigations. Current Opinion in Structural Biology, 20(2), 155–161. https://doi.org/10.1016/j.sbi.2010.01.001
  • Anderson, E. M., Larsson, K. M., & Kirk, O. (1998). One biocatalyst–many applications: The use of Candida antarctica B-lipase in organic synthesis. Biocatalysis and Biotransformation, 16(3), 181–204. https://doi.org/10.3109/10242429809003198
  • Becke, A. D. (1993). Density-functional thermochemistry. iii. the role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652.
  • Besler, B. H., Merz, K. M., Jr., & Kollman, P. A. (1990). Atomic charges derived from semiempirical methods. Journal of Computational Chemistry, 11(4), 431–439. https://doi.org/10.1002/jcc.540110404
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101.
  • Casasnovas, R., Ortega-Castro, J., Frau, J., Donoso, J., & Munoz, F. (2014). Theoretical pka calculations with continuum model solvents, alternative protocols to thermodynamic cycles. International Journal of Quantum Chemistry, 114(20), 1350–1363. https://doi.org/10.1002/qua.24699
  • Cvitkovic, J. P., Pauplis, C. D., & Kaminski, G. A. (2019). Pka17-a coarse-grain grid-based methodology and web-based software for predicting protein pK a shifts. Journal of Computational Chemistry, 40(18), 1718–1726. https://doi.org/10.1002/jcc.25826
  • Daidone, I., Paltrinieri, L., Amadei, A., Battistuzzi, G., Sola, M., Borsari, M., & Bortolotti, C. A. (2014). Unambiguous assignment of reduction potentials in diheme cytochromes. The Journal of Physical Chemistry. B, 118(27), 7554–7560.
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dutta Banik, S., Nordblad, M., Woodley, J. M., & Peters, G. H. (2016). A correlation between the activity of Candida antarctica lipase B and differences in binding free energies of organic solvent and substrate. ACS Catalysis, 6(10), 6350–6361. https://doi.org/10.1021/acscatal.6b02073
  • Fan, Y., Xie, Z., Zhang, H., & Qian, J. (2011). Kinetic resolution of both 1-phenylethanol enantiomers produced by hydrolysis of 1-phenylethyl acetate with Candida antarctica lipase B in different solvent systems. Kinetics and Catalysis, 52(5), 686–690. https://doi.org/10.1134/S0023158411050065
  • Galmés, M. À., García-Junceda, E., Świderek, K., & Moliner, V. (2020). Exploring the origin of amidase substrate promiscuity in calb by a computational approach. ACS Catalysis, 10(3), 1938–1946. https://doi.org/10.1021/acscatal.9b04002
  • Grimsley, G. R., Scholtz, J. M., & Pace, C. N. (2009). A summary of the measured pk values of the ionizable groups in folded proteins. Protein Science : A Publication of the Protein Society, 18(1), 247–251.
  • Grytsyk, N., Sugihara, J., Kaback, H. R., & Hellwig, P. (2017). pka of glu325 in lacy. Proceedings of the National Academy of Sciences of the United States of America, 114(7), 1530–1535.
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). Lincs: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). Charmm36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73.
  • Ivanov, I., Chen, B., Raugei, S., & Klein, M. L. (2006). Relative pka values from first-principles molecular dynamics: The case of histidine deprotonation. The Journal of Physical Chemistry B, 110(12), 6365–6371. https://doi.org/10.1021/jp056750i
  • Jensen, J. H., Li, H., Robertson, A. D., & Molina, P. A. (2005). Prediction and rationalization of protein pka values using qm and qm/mm methods. The Journal of Physical Chemistry. A, 109(30), 6634–6643. https://doi.org/10.1021/jp051922x
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kamerlin, S. C., Haranczyk, M., & Warshel, A. (2009). Progress in ab initio qm/mm free-energy simulations of electrostatic energies in proteins: Accelerated qm/mm studies of pka, redox reactions and solvation free energies. The Journal of Physical Chemistry. B, 113(5), 1253–1272. https://doi.org/10.1021/jp8071712
  • Krishnan, R., Binkley, J., Seeger, R., & Pople, J. (1980). Self–consistent molecular orbital methods. xx. a basis set for correlated wave functions. The Journal of Chemical Physics, 72(1), 650–654. https://doi.org/10.1063/1.438955
  • Kuhne, J., Vierock, J., Tennigkeit, S. A., Dreier, M.-A., Wietek, J., Petersen, D., Gavriljuk, K., El-Mashtoly, S. F., Hegemann, P., & Gerwert, K. (2019). Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9380–9389. https://doi.org/10.1073/pnas.1818707116
  • Le, N. P., Omote, H., Wada, Y., Al-Shawi, M. K., Nakamoto, R. K., & Futai, M. (2000). Escherichia coli atp synthase alpha subunit Arg-376: The catalytic site arginine does not participate in the hydrolysis/synthesis reaction but is required for promotion to the steady state . Biochemistry, 39(10), 2778–2783. https://doi.org/10.1021/bi992530h
  • Lide, D. R. (1991). CRC handbook of chemistry and physics (72nd ed.). CRC Press.
  • Mangiagalli, M., Carvalho, H., Natalello, A., Ferrario, V., Pennati, M. L., Barbiroli, A., Lotti, M., Pleiss, J., & Brocca, S. (2020). Diverse effects of aqueous polar co-solvents on Candida antarctica lipase B. International Journal of Biological Macromolecules, 150, 930–940. https://doi.org/10.1016/j.ijbiomac.2020.02.145
  • Milletti, F., Storchi, L., & Cruciani, G. (2009). Predicting protein pK(a) by environment similarity. Proteins, 76(2), 484–495. https://doi.org/10.1002/prot.22363
  • Nardo, G. D., Breitner, M., Bandino, A., Ghosh, D., Jennings, G. K., Hackett, J. C., & Gilardi, G. (2015). Evidence for an elevated aspartate pka in the active site of human aromatase. The Journal of Biological Chemistry, 290(2), 1186–1196.
  • Nian, B., Cao, C., & Liu, Y. (2020). How Candida antarctica lipase B can be activated in natural deep eutectic solvents: Experimental and molecular dynamics studies. Journal of Chemical Technology & Biotechnology, 95(1), 86–93. https://doi.org/10.1002/jctb.6209
  • Olsson, M. H., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). Propka3: Consistent treatment of internal and surface residues in empirical pka predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Ortiz, C., Ferreira, M. L., Barbosa, O., dos Santos, J. C., Rodrigues, R. C., Berenguer-Murcia, Á., Briand, L. E., & Fernandez-Lafuente, R. (2019). Novozym 435: The “perfect” lipase immobilized biocatalyst? Catalysis Science & Technology, 9(10), 2380–2420. https://doi.org/10.1039/C9CY00415G
  • Pahari, S., Sun, L., & Alexov, E. (2019). Pkad: A database of experimentally measured pka values of ionizable groups in proteins. Database, 2019. https://doi.org/10.1093/database/baz024
  • Paltrinieri, L., Rocco, G. D., Battistuzzi, G., Borsari, M., Sola, M., Ranieri, A., Zanetti-Polzi, L., Daidone, I., & Bortolotti, C. A. (2017). Computational evidence support the hypothesis of neuroglobin also acting as an electron transfer species. Journal of Biological Inorganic Chemistry, 22(4), 615–623.
  • Park, J. M., Laio, A., Iannuzzi, M., & Parrinello, M. (2006). Dissociation mechanism of acetic acid in water. Journal of the American Chemical Society, 128(35), 11318–11319. https://doi.org/10.1021/ja060454h
  • Parr, R. G., & Yang, W. (1995). Density-functional theory of the electronic structure of molecules. Annual Review of Physical Chemistry, 46(1), 701–728. https://doi.org/10.1146/annurev.pc.46.100195.003413
  • Pavlova, A., Lynch, D. L., Daidone, I., Zanetti-Polzi, L., Smith, M. D., Chipot, C., Kneller, D. W., Kovalevsky, A., Coates, L., Golosov, A. A., Dickson, C. J., Velez-Vega, C., Duca, J. S., Vermaas, J. V., Pang, Y. T., Acharya, A., Parks, J. M., Smith, J. C., & Gumbart, J. C. (2021). Inhibitor binding influences the protonation states of histidines in sars-cov-2 main protease. Chemical Science, 12(4), 1513–1527. https://doi.org/10.1039/d0sc04942e
  • Smondyrev, A. M., & Voth, G. A. (2002). Molecular dynamics simulation of proton transport through the influenza a virus m2 channel. Biophysical Journal, 83(4), 1987–1996. https://doi.org/10.1016/S0006-3495(02)73960-X
  • Tan, K. P., Nguyen, T. B., Patel, S., Varadarajan, R., & Madhusudhan, M. S. (2013). Depth: A web server to compute depth, cavity sizes, detect potential small-molecule ligand-binding cavities and predict the pka of ionizable residues in proteins. Nucleic Acids Research, 41(W1), W314–W321. https://doi.org/10.1093/nar/gkt503
  • Uppenberg, J., Hansen, M. T., Patkar, S., & Jones, T. A. (1994). The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure, 2(4), 293–308. https://doi.org/10.1016/S0969-2126(00)00031-9
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). Gromacs: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Warshel, A., Sharma, P. K., Kato, M., & Parson, W. W. (2006). Modeling electrostatic effects in proteins. Biochimica et Biophysica Acta, 1764(11), 1647–1676. https://doi.org/10.1016/j.bbapap.2006.08.007
  • Watari, M., Ikuta, T., Yamada, D., Shihoya, W., Yoshida, K., Tsunoda, S. P., Nureki, O., & Kandori, H. (2019). Spectroscopic study of the transmembrane domain of a rhodopsin-phosphodiesterase fusion protein from a unicellular eukaryote. The Journal of Biological Chemistry, 294(10), 3432–3443. https://doi.org/10.1074/jbc.RA118.006277
  • Wedberg, R., Abildskov, J., & Peters, G. H. (2012). Protein dynamics in organic media at varying water activity studied by molecular dynamics simulation. The Journal of Physical Chemistry. B, 116(8), 2575–2585. https://doi.org/10.1021/jp211054u
  • Witham, S., Talley, K., Wang, L., Zhang, Z., Sarkar, S., Gao, D., Yang, W., & Alexov, E. (2011). Developing hybrid approaches to predict pka values of ionizable groups. Proteins: Structure, Function, and Bioinformatics, 79(12), 3389–3399. https://doi.org/10.1002/prot.23097
  • Zanetti-Polzi, L., Aschi, M., Amadei, A., & Daidone, I. (2013). Simulation of the amide i infrared spectrum in photoinduced peptide folding/unfolding transitions. The Journal of Physical Chemistry. B, 117(41), 12383–12390.
  • Zanetti-Polzi, L., Aschi, M., Amadei, A., & Daidone, I. (2017). Alternative electron transfer channels ensure ultrafast deactivation of light-induced excited states in riboflavin binding protein. The Journal of Physical Chemistry Letters, 8(14), 3321–3327. https://doi.org/10.1021/acs.jpclett.7b01575
  • Zanetti-Polzi, L., Bortolotti, C. A., Daidone, I., Aschi, M., Amadei, A., & Corni, S. (2015). A few key residues determine the high redox potential shift in azurin mutants. Organic & Biomolecular Chemistry, 13(45), 11003–11013.
  • Zanetti-Polzi, L., Corni, S., Daidone, I., & Amadei, A. (2016). Extending the essential dynamics analysis to investigate molecular properties: Application to the redox potential of proteins. Physical Chemistry Chemical Physics, 18(27), 18450–18459. https://doi.org/10.1039/C6CP03394F
  • Zanetti-Polzi, L., Daidone, I., & Amadei, A. (2012). A theoretical reappraisal of polylysine in the investigation of secondary structure sensitivity of infrared spectra. The Journal of Physical Chemistry. B, 116(10), 3353–3360.
  • Zanetti-Polzi, L., Daidone, I., & Amadei, A. (2020). Fully atomistic multiscale approach for pKa Prediction. The Journal of Physical Chemistry. B, 124(23), 4712–4722. https://doi.org/10.1021/acs.jpcb.0c01752
  • Zanetti-Polzi, L., Del Galdo, S., Daidone, I., D'Abramo, M., Barone, V., Aschi, M., & Amadei, A. (2018). Extending the perturbed matrix method beyond the dipolar approximation: Comparison of different levels of theory. Physical Chemistry Chemical Physics : PCCP, 20(37), 24369–24378.
  • Zhang, M., X.-n, M., C.-t, L., Zhao, D., Xing, Y-l., & Qiu, J-h. (2017). A correlation between the degradability of poly (butylene succinate)-based copolyesters and catalytic behavior with Candida antarctica lipase B. RSC Advances, 7(68), 43052–43063. https://doi.org/10.1039/C7RA05553F

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.