320
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

In-silico study of the interactions between acylated glucagon like-peptide-1 analogues and the native receptor

, ORCID Icon, , & ORCID Icon
Pages 5007-5021 | Received 15 Dec 2021, Accepted 10 May 2022, Published online: 25 May 2022

References

  • Abroshan, H., Akbarzadeh, H., & Parsafar, G. A. (2010). Molecular dynamics simulation and MM-PBSA calculations of sickle cell hemoglobin in dimer form with Val, Trp, or Phe at the lateral contact. Journal of Physical Organic Chemistry, 23(9), 866–877. https://doi.org/10.1002/poc.1679
  • Acevedo, W., Ramírez-Sarmiento, C. A., & Agosin, E. (2018, April). Identifying the interactions between natural, non-caloric sweeteners and the human sweet receptor by molecular docking. Food Chemistry, 264, 164–171. https://doi.org/10.1016/j.foodchem.2018.04.113
  • Adelhorst, K., Hedegaard, B. B., Knudsen, L. B., & Kirk, O. (1994). Structure-activity studies of glucagon-like peptide-1. The Journal of Biological Chemistry, 269(9), 6275–6278.
  • Ahrén, B. (2011). GLP-1 for type 2 diabetes. Experimental Cell Research, 317(9), 1239–1245. https://doi.org/10.1016/j.yexcr.2011.01.010
  • Alvarez, E., Martinez, M. D., Roncero, I., Chowen, J. A., Garcia-Cuartero, B., Gispert, J. D., Sanz, C., Vazquez, P., Maldonado, A., de Caceres, J., Desco, M., Pozo, M. A., & Blazquez, E. (2005). The expression of GLP-1 receptor mRNA and protein allows the effect of GLP-1 on glucose metabolism in the human hypothalamus and brainstem. Journal of Neurochemistry, 92(4), 798–806. https://doi.org/10.1111/j.1471-4159.2004.02914.x
  • Åqvist, J., Wennerström, P., Nervall, M., Bjelic, S., & Brandsdal, B. O. (2004). Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chemical Physics Letters, 384(4–6), 288–294. https://doi.org/10.1016/j.cplett.2003.12.039
  • Bakan, A., Meireles, L. M., & Barhar, I. (2010). ProDy: Protein dynamics & sequence analysis. ProDy. http://prody.csb.pitt.edu/
  • Bakan, A., Meireles, L. M., & Bahar, I. (2011). ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics (Oxford, England), 27(11), 1575–1577. https://doi.org/10.1093/bioinformatics/btr168
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bottaro, S., & Lindorff-Larsen, K. (2018). Biophysical experiments and biomolecular simulations: A perfect match? Science (New York, N.Y.), 361(6400), 355–360.
  • Briyal, S., Shah, S., & Gulati, a. (2014). Neuroprotective and anti-apoptotic effects of liraglutide in the rat brain following focal cerebral ischemia. Neuroscience, 281, 269–281. https://doi.org/10.1016/j.neuroscience.2014.09.064
  • Bukrinski, J. T., Sønderby, P., Antunes, F., Andersen, B., Schmidt, E. G. W., Peters, G. H. J., & Harris, P. (2017). Glucagon-like peptide 1 conjugated to recombinant human serum albumin variants with modified neonatal Fc receptor binding properties. Impact on molecular structure and half-life. Biochemistry, 56(36), 4860–4870. https://doi.org/10.1021/acs.biochem.7b00492
  • Case, D. A., Betz, R. M., Cerutti, D. S., Cheatham, I. I. I., T. E., Darden, T. A., Duke, R. E., & Kollman, P. A. (2016). Amber 2016. University of California.
  • Chen, F., Liu, S.-S., Duan, X.-T., & Xiao, Q.-F. (2014). Predicting the mixture effects of three pesticides by integrating molecular simulation with concentration addition modeling. RSC Adv, 4(61), 32256–32262. https://doi.org/10.1039/C4RA02698E
  • Chow, K.-H., & Ferguson, D. M. (1995). Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling. Computer Physics Communications, 91(1–3), 283–289. https://doi.org/10.1016/0010-4655(95)00059-O
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Darve, E., Rodríguez-Gómez, D., & Pohorille, A. (2008). Adaptive biasing force method for scalar and vector free energy calculations. The Journal of Chemical Physics, 128(14), 144120. https://doi.org/10.1063/1.2829861
  • Deacon, C. F. (2004). Therapeutic strategies based on glucagon-like peptide 1. Diabetes, 53(9), 2181–2189. https://doi.org/10.2337/diabetes.53.9.2181
  • Deacon, C. F., Nauck, M. A., Toft-Nielsen, M., Pridal, L., Willms, B., & Holst, J. J. (1995). Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects. Diabetes, 44(9), 1126–1131. https://doi.org/10.2337/diabetes.44.9.1126
  • Deganutti, G., Liang, Y.-L., Zhang, X., Khoshouei, M., Clydesdale, L., Belousoff, M. J., Venugopal, H., Truong, T. T., Glukhova, A., Keller, A. N., Gregory, K. J., Leach, K., Christopoulos, A., Danev, R., Reynolds, C. A., Zhao, P., Sexton, P. M., & Wootten, D. (2022). Dynamics of GLP-1R peptide agonist engagement are correlated with kinetics of G protein activation. Nature Communications, 13(1), 1–18. https://doi.org/10.1038/s41467-021-27760-0
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research, 35(Web Server issue), W522–W525.
  • Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., & Baker, N. A. (2004). PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research, 32(Web Server issue), W665–W667. https://doi.org/10.1093/nar/gkh381
  • Drucker, D. J. (2016). The cardiovascular biology of glucagon-like peptide-1. Cell Metabolism, 24(1), 15–30. https://doi.org/10.1016/j.cmet.2016.06.009
  • Drucker, D. J. (2021). GLP-1 physiology informs the pharmacotherapy of obesity. Molecular Metabolism, 57, 101351.
  • Drucker, D. J., & Nauck, M. A. (2006). The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet (London, England), 368(9548), 1696–1705. https://doi.org/10.1016/S0140-6736(06)69705-5
  • Drucker, D. J., Dritselis, A., & Kirkpatrick, P. (2010). Liraglutide. Nature Reviews. Drug Discovery, 9(4), 267–268. https://doi.org/10.1038/nrd3148
  • Edison, P., Femminella, G. D., Ritchie, C. W., Holmes, C., Walker, Z., Ridha, B. H., Raza, S., Livingston, N. R., Nowell, J., Busza, G., & Frangou, E. (2021). Evaluation of liraglutide in the treatment of Alzheimer’s disease. Alzheimer’s & Dementia, 17, e057848.
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Feig, M., Onufriev, A., Lee, M. S., Im, W., Case, D. A., & Brooks, C. L. (2004). Performance comparison of generalized born and Poisson methods in the calculation of electrostatic solvation energies for protein structures. Journal of Computational Chemistry, 25(2), 265–284. https://doi.org/10.1002/jcc.10378
  • Flint, A., Raben, A., Astrup, A., & Holst, J. J. (1998). Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. Journal of Clinical Investigation, 101(3), 515–520. https://doi.org/10.1172/JCI990
  • Frederiksen, T. M., Sønderby, P., Ryberg, L. A., Harris, P., Bukrinski, J. T., Scharff-Poulsen, A. M., Elf-Lind, M. N., & Peters, G. H. (2015). Oligomerization of a glucagon-like peptide 1 analog: Bridging experiment and simulations. Biophysical Journal, 109(6), 1202–1213. https://doi.org/10.1016/j.bpj.2015.07.051
  • Geneva: World Health Organization. (2018a). The top 10 causes of death. Home/Newsroom/Fact Sheets/Detail. Retrieved from https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  • Geneva: World Health Organization. (2018b). World health statistics 2018: monitoring health for the SDGs, sustainable development goals.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gohlke, H., & Case, D. a. (2004). Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. Journal of Computational Chemistry, 25(2), 238–250. https://doi.org/10.1002/jcc.10379
  • Gómez Santiago, C., Paci, E., & Donnelly, D. (2018). A mechanism for agonist activation of the glucagon-like peptide-1 (GLP-1) receptor through modelling & molecular dynamics. Biochemical and Biophysical Research Communications, 498(2), 359–365. https://doi.org/10.1016/j.bbrc.2018.01.110
  • Gonnet, P. (2007). P-SHAKE: A quadratically convergent SHAKE in O (n2). Journal of Computational Physics, 220(2), 740–750. https://doi.org/10.1016/j.jcp.2006.05.032
  • Graaf, C. D., Donnelly, D., Wootten, D., Lau, J., Sexton, P. M., Miller, L. J., Ahn, J.-M., Liao, J., Fletcher, M. M., Yang, D., Brown, A. J. H., Zhou, C., Deng, J., & Wang, M.-W. (2016). Glucagon-like peptide-1 and its class BG protein–coupled receptors: a long march to therapeutic successes. Pharmacological Reviews, 68(4), 954–1013. https://doi.org/10.1124/pr.115.011395
  • Gullingsrud, J., Saam, J., & Phillips, J. (2017). VMD psfgen plugin, Version 1.6.4. University of Illinois and Beckman Institute, Theoretical and Computational Biophysics Group.
  • Holst, J. J., Orskov, C., Nielsen, O. V., & Schwartz, T. W. (1987). Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Letters, 211(2), 169–174. https://doi.org/10.1016/0014-5793(87)81430-8
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. http://www.ncbi.nlm.nih.gov/pubmed/8744570 https://doi.org/10.1016/0263-7855(96)00018-5
  • Jazayeri, A., Rappas, M., Brown, A. J. H., Kean, J., Errey, J. C., Robertson, N. J., Fiez-Vandal, C., Andrews, S. P., Congreve, M., Bortolato, A., Mason, J. S., Baig, A. H., Teobald, I., Doré, A. S., Weir, M., Cooke, R. M., & Marshall, F. H. (2017). Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature, 546(7657), 254–258. https://doi.org/10.1038/nature22800
  • Jurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L. E., Brookes, D. H., Wilson, L., Chen, J., Liles, K., Chun, M., Li, P., Gohara, D. W., Dolinsky, T., Konecny, R., Koes, D. R., Nielsen, J. E., Head-Gordon, T., Geng, W., … Baker, N. A. (2018). Improvements to the APBS biomolecular solvation software suite. Protein Science : A Publication of the Protein Society, 27(1), 112–128. https://doi.org/10.1002/pro.3280
  • Karplus, M., & Kushick, J. N. (1981). Method for estimating the configurational entropy of macromolecules. Macromolecules, 14(2), 325–332. https://doi.org/10.1021/ma50003a019
  • Knudsen, L. B. (2010). Liraglutide, a GLP-1 analogue to treat diabetes. In Prof. Dr. János Fischer and Prof. Dr. C. Robin Ganellin (Eds.), Analogue-based drug discovery II (pp. 333–357). Wiley-VCH. https://doi.org/10.1002/9783527630035.ch14
  • Knudsen, L. B., & Lau, J. (2019). The discovery and development of liraglutide and semaglutide. Frontiers in Endocrinology, 10, 155.
  • Knudsen, L. B., Nielsen, P. F., Huusfeldt, P. O., Johansen, N. L., Madsen, K., Pedersen, F. Z., Thøgersen, H., Wilken, M., & Agersø, H. (2000). Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. Journal of Medicinal Chemistry, 43(9), 1664–1669. https://doi.org/10.1021/jm9909645
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England), 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  • Lau, J., Bloch, P., Schäffer, L., Pettersson, I., Spetzler, J., Kofoed, J., Madsen, K., Knudsen, L. B., McGuire, J., Steensgaard, D. B., Strauss, H. M., Gram, D. X., Knudsen, S. M., Nielsen, F. S., Thygesen, P., Reedtz-Runge, S., & Kruse, T. (2015). Discovery of the once-weekly glucagon-like peptide-1 (GLP-1) analogue semaglutide. Journal of Medicinal Chemistry, 58(18), 7370–7380. https://doi.org/10.1021/acs.jmedchem.5b00726
  • Liang, S., Li, L., Hsu, W.-L., Pilcher, M. N., Uversky, V., Zhou, Y., Dunker, A. K., & Meroueh, S. O. (2009). Exploring the molecular design of protein interaction sites with molecular dynamics simulations and free energy calculations. Biochemistry, 48(2), 399–414. https://doi.org/10.1021/bi8017043
  • Loncharich, R. J., Brooks, B. R., & Pastor, R. W. (1992). Langevin dynamics of peptides: The frictional dependence of isomerization rates of N-acetylalanyl-N'-methylamide . Biopolymers, 32(5), 523–535. https://doi.org/10.1002/bip.360320508
  • Lund, P. K., Goodman, R. H., & Habener, J. F. (1981). Pancreatic pre-proglucagons are encoded by two separate mRNAs. The Journal of Biological Chemistry, 256(13), 6515–6518.
  • MacKerell, A. D., Bashford, D., Bellott, M., Dunbrack, R. L., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., … Karplus, M. (1998). All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry. B, 102(18), 3586–3616. https://doi.org/10.1021/jp973084f
  • Madej, B. D., & Walker, R. C. (2014). An amber lipid force field tutorial: Lipid14 edition. https://ambermd.org/tutorials/advanced/tutorial16/index.html
  • Madsen, K., Knudsen, L. B., Agersoe, H., Nielsen, P. F., Thøgersen, H., Wilken, M., & Johansen, N. L. (2007). Structure-activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: Importance of fatty acid length, polarity, and bulkiness. Journal of Medicinal Chemistry, 50(24), 6126–6132. https://doi.org/10.1021/jm070861j
  • McClean, P. L., & Hölscher, C. (2014). Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology, 76, 57–67. https://doi.org/10.1016/j.neuropharm.2013.08.005
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Nauck, M. A. (2008). Liraglutide, a once-daily human GLP-1 analogue. The British Journal of Diabetes & Vascular Disease, 8(2_suppl), S26–S33. https://doi.org/10.1177/1474651408100524
  • Nauck, M. A., Niedereichholz, U., Ettler, R., Holst, J. J., Orskov, C., Ritzel, R., & Schmiegel, W. H. (1997). Glucagon-like peptide 1 inhibition of gastric emptying outweighs its insulinotropic effects in healthy humans. The American Journal of Physiology, 273(5), E981–E988.
  • Nelson, M. T., Humphrey, W., Gursoy, A., Dalke, A., Kale, L. V., Skeel, R. D., & Schulten, K. (1996). NAMD: A parallel, object-oriented molecular dynamics program. International Journal of High Performance Computing Applications, 10(4), 251-268. https://doi.org/10.1177/109434209601000401
  • Nørgaard, C. H., Friedrich, S., Hansen, C. T., Gerds, T., Ballard, C., Møller, D. V., Knudsen, L. B., Kvist, K., Zinman, B., Holm, E., Torp-Pedersen, C., & Mørch, L. S. (2022). Treatment with glucagon‐like peptide‐1 receptor agonists and incidence of dementia: Data from pooled double‐blind randomized controlled trials and nationwide disease and prescription registers. Alzheimer's & Dementia (New York, N. Y.), 8(1), e12268.
  • Orskov, C., Bersani, M., Johnsen, A. H., Højrup, P., & Holst, J. J. (1989). Complete sequences of glucagon-like peptide-1 from human and pig small intestine. The Journal of Biological Chemistry, 264(22), 12826–12829.
  • Orskov, C., Rabenhoj, L., Wettergren, A., Kofod, H., & Holst, J. J. (1994). Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide i in humans. Diabetes, 43(4), 535–539. https://doi.org/10.2337/diab.43.4.535
  • Pahud de Mortanges, A., Sinaci, E., Salvador Jr, D., Bally, L. C., Muka, T., Wilhelm, M., & Bano, A. (2022). GLP-1 receptor agonists and coronary arteries: From mechanisms to events. Frontiers in Pharmacology, 13.
  • Peters, T. (1985). Serum albumin. Advances in Protein Chemistry, 37, 161–245. https://doi.org/10.1016/S0065-3233(08)60065-0
  • Read, N., French, S., & Cunningham, K. (1994). The role of the gut in regulating food intake in man. Nutrition Reviews, 52(1), 1–10. https://doi.org/10.1111/j.1753-4887.1994.tb01347.x
  • Ruiz-Grande, C., Alarcón, C., Alcántara, A., Castilla, C., López Novoa, J., Villanueva-Peñacarrillo, M., & Valverde, I. (1993). Renal catabolism of truncated glucagon-like peptide 1. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Metabolisme, 25(12), 612–616. https://doi.org/10.1055/s-2007-1002190
  • Runge, S., Thøgersen, H., Madsen, K., Lau, J., & Rudolph, R. (2008). Crystal structure of the ligand-bound glucagon-like peptide-1 receptor extracellular domain. The Journal of Biological Chemistry, 283(17), 11340–11347. https://doi.org/10.1074/jbc.M708740200
  • Ryberg, L. A., Sønderby, P., Bukrinski, J. T., Harris, P., & Peters, G. H. J. (2020). Investigations of albumin-insulin detemir complexes using molecular dynamics simulations and free energy calculations. Molecular Pharmaceutics, 17(1), 132–144. https://doi.org/10.1021/acs.molpharmaceut.9b00839
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Saleh, N., Ibrahim, P., & Clark, T. (2017a). Differences between G-protein-stabilized agonist-GPCR complexes and their nanobody-stabilized equivalents. Angewandte Chemie, 129(31), 9136–9140. https://doi.org/10.1002/ange.201702468
  • Saleh, N., Ibrahim, P., Saladino, G., Gervasio, F. L., & Clark, T. (2017b). An efficient metadynamics-based protocol to model the binding affinity and the transition state ensemble of G-protein-coupled receptor ligands. Journal of Chemical Information and Modeling, 57(5), 1210–1217. https://doi.org/10.1021/acs.jcim.6b00772
  • Saleh, N., Saladino, G., Gervasio, F. L., & Clark, T. (2017c). Investigating allosteric effects on the functional dynamics of β2-adrenergic ternary complexes with enhanced-sampling simulations . Chemical Science, 8(5), 4019–4026. https://doi.org/10.1039/c6sc04647a
  • Saleh, N., Saladino, G., Gervasio, F. L., Haensele, E., Banting, L., Whitley, D. C., Sopkova-de Oliveira Santos, J., Bureau, R., & Clark, T. (2016). A three-site mechanism for agonist/antagonist selective binding to vasopressin receptors. Angewandte Chemie (International ed. in English), 55(28), 8008–8012. https://doi.org/10.1002/anie.201602729
  • Schlitter, J. (1993). Estimation of absolute and relative entropies of macromolecules using the covariance matrix. Chemical Physics Letters, 215(6), 617–621. https://doi.org/10.1016/0009-2614(93)89366-P
  • Schrödinger. (2018). Maestro, Schrödinger Release 2018-4. LLC.
  • Schutz, C. N., & Warshel, A. (2001). What are the dielectric "constants" of proteins and how to validate electrostatic models? Proteins, 44(4), 400–417. https://doi.org/10.1002/prot.1106
  • Seidu, S., Cos, X., Brunton, S., Harris, S. B., Jansson, S. P. O., Mata-Cases, M., Neijens, A. M. J., Topsever, P., & Khunti, K. (2021). A disease state approach to the pharmacological management of Type 2 diabetes in primary care: A position statement by Primary Care Diabetes Europe. Primary Care Diabetes, 15(1), 31–51. https://doi.org/10.1016/j.pcd.2020.05.004
  • Sitkoff, D., Sharp, K. A., & Honig, B. (1994). Accurate calculation of hydration free energies using macroscopic solvent models. The Journal of Physical Chemistry, 98(7), 1978–1988. https://doi.org/10.1021/j100058a043
  • Siu, F. Y., He, M., de Graaf, C., Han, G. W., Yang, D., Zhang, Z., Zhou, C., Xu, Q., Wacker, D., Joseph, J. S., Liu, W., Lau, J., Cherezov, V., Katritch, V., Wang, M.-W., & Stevens, R. C. (2013). Structure of the human glucagon class B G-protein-coupled receptor. Nature, 499(7459), 444–449. https://doi.org/10.1038/nature12393
  • Srinivasan, J., Cheatham, T. E., Cieplak, P., Kollman, P. A., & Case, D. A. (1998). Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate - DNA helices. Journal of the American Chemical Society, 120(37), 9401–9409. https://doi.org/10.1021/ja981844
  • Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119
  • Talbot, K., & Wang, H. Y. (2014). The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer’s disease. Alzheimer's & Dementia : The Journal of the Alzheimer's Association, 10(1 Suppl), S12–S25. https://doi.org/10.1016/j.jalz.2013.12.007
  • Tang, N., Somavarapu, A. K., & Kepp, K. P. (2018). Molecular recipe for $γ$-secretase modulation from computational analysis of 60 active compounds. ACS Omega, 3(12), 18078–18088. https://doi.org/10.1021/acsomega.8b02196
  • Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  • Underwood, C. R., Garibay, P., Knudsen, L. B., Hastrup, S., Peters, G. H., Rudolph, R., & Reedtz-Runge, S. (2010). Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor. The Journal of Biological Chemistry, 285(1), 723–730. https://doi.org/10.1074/jbc.M109.033829
  • Ussher, J. R., & Drucker, D. J. (2014). Cardiovascular actions of incretin-based therapies. Circulation Research, 114(11), 1788–1803. https://doi.org/10.1161/CIRCRESAHA.114.301958
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wettergren, A., Pridal, L., Wøjdemann, M., & Holst, J. J. (1998). Amidated and non-amidated glucagon-like peptide-1 (GLP-1): Non-pancreatic effects (cephalic phase acid secretion) and stability in plasma in humans. Regulatory Peptides, 77(1–3), 83–87. https://doi.org/10.1016/S0167-0115(98)00044-5
  • Xiao, X., Qin, M., Zhang, F., Su, Y., Zhou, B., & Zhou, Z. (2020). Understanding the mechanism of activation/deactivation of GLP-1R via accelerated molecular dynamics simulation. Australian Journal of Chemistry, 74(3), 211–218. https://doi.org/10.1071/CH20127
  • Zhang, H. C., Hu, X. L., Yin, D. Q., & Lin, Z. F. (2011). Development of molecular docking-based binding energy to predict the joint effect of BPA and its analogs. Human & Experimental Toxicology, 30(4), 318–327. https://doi.org/10.1177/0960327110372400
  • Zhang, J., Bai, Q., Pérez-Sánchez, H., Shang, S., An, X., & Yao, X. (2019). Investigation of ECD conformational transition mechanism of GLP-1R by molecular dynamics simulations and Markov state model. Physical Chemistry Chemical Physics : PCCP, 21(16), 8470–8481.
  • Zhang, X., Belousoff, M. J., Liang, Y.-L., Danev, R., Sexton, P. M., & Wootten, D. (2021). Structure and dynamics of semaglutide-and taspoglutide-bound GLP-1R-Gs complexes. Cell Reports, 36(2), 109374.
  • Zhang, Y., Sun, B., Feng, D., Hu, H., Chu, M., Qu, Q., Tarrasch, J. T., Li, S., Sun Kobilka, T., Kobilka, B. K., & Skiniotis, G. (2017). Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature, 546(7657), 248–253. https://doi.org/10.1038/nature22394
  • Zhao, F., Zhou, Q., Cong, Z., Hang, K., Zou, X., Zhang, C., Chen, Y., Dai, A., Liang, A., Ming, Q., Wang, M., Chen, L.-N., Xu, P., Chang, R., Feng, W., Xia, T., Zhang, Y., Wu, B., Yang, D., … Wang, M.-W. (2022). Structural insights into multiplexed pharmacological actions of tirzepatide and peptide 20 at the GIP, GLP-1 or glucagon receptors. Nature Communications, 13(1), 1–16. https://doi.org/10.1038/s41467-022-28683-0
  • Zhao, L., Xu, J., Wang, Q., Qian, Z., Feng, W., Yin, X., & Fang, Y. (2015). Protective effect of rhGLP-1 (7-36) on brain ischemia/reperfusion damage in diabetic rats . Brain Research, 1602, 153–159. https://doi.org/10.1016/j.brainres.2015.01.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.