287
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Repurposing antiviral drugs against HTLV-1 protease by molecular docking and molecular dynamics simulation

, , ORCID Icon, , , & ORCID Icon show all
Pages 5057-5066 | Received 15 Jan 2022, Accepted 11 May 2022, Published online: 25 May 2022

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Absalon, J., Thal, G., Thiry, A., Yang, R., Mancini, M., & McGrath, D. (2008). Atazanavir is safe and efficacious in HBV and HCV co-infected patients: Results of AI424138 (CASTLE). Journal of the International AIDS Society, 11(Suppl 1), P136–2. https://doi.org/10.1186/1758-2652-11-S1-P136
  • Abu-Jafar, A., Suleiman, M., Nesim, N., & Huleihel, M. (2020). The effect of alcoholic extract from Eucalyptus camaldulensis leaves on HTLV-1 tax activities. Cell Cycle (Georgetown, Tex.), 19(14), 1768–1776. https://doi.org/10.1080/15384101.2020.1779455
  • Bonomi, M., Barducci, A., Gervasio, F. L., & Parrinello, M. (2010). Multiple routes and milestones in the folding of HIV-1 protease monomer. PloS One, 5(10), e13208. https://doi.org/10.1371/journal.pone.0013208
  • Dubuisson, L., Lormières, F., Fochi, S., Turpin, J., Pasquier, A., Douceron, E., Oliva, A., Bazarbachi, A., Lallemand-Breitenbach, V., De Thé, H., Journo, C., & Mahieux, R. (2018). Stability of HTLV-2 antisense protein is controlled by PML nuclear bodies in a SUMO-dependent manner. Oncogene, 37(21), 2806–2816. https://doi.org/10.1038/s41388-018-0163-x
  • El-Hoshoudy, A. (2020). Investigating the potential antiviral activity drugs against SARS-CoV-2 by molecular docking simulation. Journal of Molecular Liquids, 318, 113968. https://doi.org/10.1016/j.molliq.2020.113968
  • Enayatkhani, M., Salimi, M., Azadmanesh, K., & Teimoori-Toolabi, L. (2020). In-silico identification of new inhibitors for Low-density lipoprotein receptor-related protein6 (LRP6). Journal of Biomolecular Structure and Dynamics, 18, 1–11. https://doi.org/10.1080/07391102.2020.1857843
  • Eron, J. J. Jr (2000). HIV-1 protease inhibitors. Clinical Infectious Diseases, 30(Supplement_2), S160–S70. https://doi.org/10.1086/313853
  • Gessain, A., & Cassar, O. (2012). Epidemiological aspects and world distribution of HTLV-1 infection. Frontiers in Microbiology, 3, 388. https://doi.org/10.3389/fmicb.2012.00388
  • Gessain, A., & Mahieux, R. (2012). Tropical spastic paraparesis and HTLV-1 associated myelopathy: Clinical, epidemiological, virological and therapeutic aspects. Revue Neurologique, 168(3), 257–269. https://doi.org/10.1016/j.neurol.2011.12.006
  • Goldsmith, D. R., & Perry, C. M. (2003). Atazanavir. Drugs, 63(16), 1679–1693. https://doi.org/10.2165/00003495-200363160-00003
  • Heil, E. L., Townsend, M. L., Shipp, K., Clarke, A., & Johnson, M. D. (2010). Incidence of severe hepatotoxicity related to antiretroviral therapy in HIV/HCV coinfected patients. AIDS Research and Treatment, 2010, 856542. https://doi.org/10.1155/2010/856542
  • Hoshino, H. (2012). Cellular factors involved in HTLV-1 entry and pathogenicit. Frontiers in Microbiology, 3, 222. https://doi.org/10.3389/fmicb.2012.00222
  • Jahantigh, H. R., Stufano, A., Lovreglio, P., Rezaee, S. A., & Ahmadi, K. (2021). In silico identification of epitope-based vaccine candidates against HTLV-1. Journal of Biomolecular Structure and Dynamics, 2, 1–18. https://doi.org/10.1080/07391102.2021.1889669
  • Jørgensen, C. K., & Reisfeld, R. (1983). Judd-Ofelt parameters and chemical bonding. Journal of the Less Common Metals, 93(1), 107–112. https://doi.org/10.1016/0022-5088(83)90454-X
  • Kaminski, G., & Jorgensen, W. L. (1996). Performance of the AMBER94, MMFF94, and OPLS-AA force fields for modeling organic liquids. The Journal of Physical Chemistry, 100(46), 18010–18013. https://doi.org/10.1021/jp9624257
  • Karbalaei, M., & Keikha, M. (2019). Curcumin as an herbal inhibitor candidate against HTLV-1 protease. Jentashapir Journal of Health Research, 10(1), e92813. https://doi.org/10.5812/jjhr.92813
  • Kassay, N., Mótyán, J. A., Matúz, K., Golda, M., & Tőzsér, J. (2021). Biochemical characterization, specificity and inhibition studies of HTLV-1, HTLV-2, and HTLV-3 proteases. Life, 11(2), 127. https://doi.org/10.3390/life11020127
  • Kheirabadi, M., Maleki, J., Soufian, S., & Hosseini, S. (2016). Design of new potent HTLV-1 protease inhibitors: In silico study. Molecular Biology Research Communications, 5(1), 19–30.
  • Kitchen, V. S., Skinner, C., Ariyoshi, K., Weber, J. N., Pinching, A. J., Lane, E. A., Duncan, I. B., Burckhardt, J., Burger, H. U., & Bragman, K. (1995). Safety and activity of saquinavir in HIV infection. The Lancet, 345(8955), 952–955. https://doi.org/10.1016/S0140-6736(95)90699-1
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kuhnert, M., Steuber, H., & Diederich, W. E. (2014). Structural basis for HTLV-1 protease inhibition by the HIV-1 protease inhibitor indinavir. Journal of Medicinal Chemistry, 57(14), 6266–6272. https://doi.org/10.1021/jm500402c
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations . Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Li, H.-C., & Lo, S.-Y. (2015). Hepatitis C virus: Virology, diagnosis and treatment. World Journal of Hepatology, 7(10), 1377–1389. https://doi.org/10.4254/wjh.v7.i10.1377
  • Li, Z., Yao, F., Xue, G., Xu, Y., Niu, J., Cui, M., Wang, H., Wu, S., Lu, A., Zhong, J., & Meng, G. (2019). Antiviral effects of simeprevir on multiple viruses. Antiviral Research, 172, 104607. https://doi.org/10.1016/j.antiviral.2019.104607
  • Mafakher, L., Rismani, E., Rahimi, H., Enayatkhani, M., Azadmanesh, K., & Teimoori-Toolabi, L. (2022). Computational design of antagonist peptides based on the structure of secreted frizzled-related protein-1 (SFRP1) aiming to inhibit Wnt signaling pathway. Journal of Biomolecular Structure & Dynamics, 40(5), 2169–2120. https://doi.org/10.1080/07391102.2020.1835718
  • Nithin, C., Ghosh, P., & Bujnicki, J. M. (2018). Bioinformatics tools and benchmarks for computational docking and 3D structure prediction of RNA-protein complexes. Genes, 9(9), 432. https://doi.org/10.3390/genes9090432
  • Pasquier, A., Alais, S., Roux, L., Thoulouze, M.-I., Alvarez, K., Journo, C., Dutartre, H., & Mahieux, R. (2018). How to control HTLV-1-associated diseases: Preventing de novo cellular infection using antiviral therapy. Frontiers in Microbiology, 9, 278. https://doi.org/10.3389/fmicb.2018.00278
  • Piliero, P. J. (2002). Atazanavir: A novel HIV-1 protease inhibitor. Expert Opinion on Investigational Drugs, 11(9), 1295–1301. https://doi.org/10.1517/13543784.11.9.1295
  • Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., Norris, A., Sanseau, P., Cavalla, D., & Pirmohamed, M. (2019). Drug repurposing: Progress, challenges and recommendations. Nature Reviews. Drug Discovery, 18(1), 41–58. https://doi.org/10.1038/nrd.2018.168
  • Quaresma, J. A., Yoshikawa, G. T., Koyama, R. V., Dias, G. A., Fujihara, S., & Fuzii, H. T. (2016). HTLV-1, immune response and autoimmunity. Viruses, 8(1), 5. https://doi.org/10.3390/v8010005
  • Selvaraj, C., Singh, P., & Singh, S. K. (2014). Molecular modeling studies and comparative analysis on structurally similar HTLV and HIV protease using HIV-PR inhibitors. Journal of Receptor and Signal Transduction Research, 34(5), 361–371. https://doi.org/10.3109/10799893.2014.898659
  • Shuker, S. B., Mariani, V. L., Herger, B. E., & Dennison, K. J. (2003). Understanding HTLV-I Protease. Chemistry & Biology, 10(5), 373–380. https://doi.org/10.1016/S1074-5521(03)00104-2
  • Taylor, K., Das, S., Pearson, M., Kozubek, J., Strivens, M., & Gardner, S. (2019). Systematic drug repurposing to enable precision medicine: A case study in breast cancer. Digital Medicine, 5(4), 180. https://doi.org/10.4103/digm.digm_28_19
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Vaidya, A., & Perry, C. M. (2013). Simeprevir: First global approval. Drugs, 73(18), 2093–2106. https://doi.org/10.1007/s40265-013-0153-9
  • Willems, L., Hasegawa, H., Accolla, R., Bangham, C., Bazarbachi, A., Bertazzoni, U., Carneiro-Proietti, A. B. d F., Cheng, H., Chieco-Bianchi, L., Ciminale, V., Coelho-Dos-Reis, J., Esparza, J., Gallo, R. C., Gessain, A., Gotuzzo, E., Hall, W., Harford, J., Hermine, O., Jacobson, S., … Yamano, Y. (2017). Reducing the global burden of HTLV-1 infection: An agenda for research and action. Antiviral Research, 137, 41–48. https://doi.org/10.1016/j.antiviral.2016.10.015
  • Williams, C. K. O. (2019). Global HTLV-1/2 burden and associated diseases. In Cancer and AIDS (pp. 21–57). Cham: Springer. https://doi.org/10.1007/978-3-319-99235-8_2
  • Wu, Y., Tepper, H. L., & Voth, G. A. (2006). Flexible simple point-charge water model with improved liquid-state properties. The Journal of Chemical Physics, 124(2), 024503. https://doi.org/10.1063/1.2136877

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.