110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Prospects for the use of macrocyclic photosensitizers for inactivation of SARS-CoV-2: selection of compounds leaders based on the molecular docking data

, , , , , & show all
Pages 5107-5116 | Received 11 Feb 2022, Accepted 14 May 2022, Published online: 08 Jun 2022

References

  • Abrahams, L. (2020). Covid-19: Acquired acute porphyria hypothesis (edited). https://doi.org/10.31219/osf.io/fxz3p
  • Alkhansa, A., Lakkis, G., & El Zein, L. (2021). Mutational analysis of SARS-CoV-2 ORF8 during six months of COVID-19 pandemic. Gene Reports, 23, 101024. https://doi.org/10.1016/j.genrep.2021.101024
  • Baker, N. A., Sept, D., Joseph, S., Holst, M. J., & McCammon, J. A. (2001). Electrostatics of nanosystems: Application to microtubules and the ribosome. Proceedings of the National Academy of Sciences of the United States of America, 98(18), 10037–10041. https://doi.org/10.1073/pnas.181342398
  • Chasapis, C. T., Georgiopoulou, A. K., Perlepes, S. P., Bjørklund, G., & Peana, M. (2021). A SARS-CoV-2–human metalloproteome interaction map. Journal of Inorganic Biochemistry, 219, 111423. https://doi.org/10.1016/j.jinorgbio.2021.111423
  • Chen, S., Zheng, X., Zhu, J., Ding, R., Jin, Y., Zhang, W., Yang, H., Zheng, Y., Li, X., & Duan, G. (2020). Extended ORF8 gene region is valuable in the epidemiological investigation of severe acute respiratory syndrome–similar coronavirus. The Journal of Infectious Diseases, 222(2), 223–233. https://doi.org/10.1093/infdis/jiaa278
  • Daniel, Y., Hunt, B. J., Retter, A., Henderson, K., Wilson, S., Sharpe, C. C., & Shattock, M. J. (2020). Haemoglobin oxygen affinity in patients with severe COVID-19 infection. British Journal of Haematology, 190(3), e126–e127. https://doi.org/10.1111/bjh.16888
  • Davies, M. J., & Truscott, R. J. (2001). Photo-oxidation of proteins and its role in cataractogenesis. Journal of Photochemistry & Photobiology B: Biology, 63(1–3), 114–125. https://doi.org/10.1016/S1011-1344(01)00208-1
  • Fernandes, A. B., De Lima, C. J., Villaverde, A. G. B., Pereira, P. C., Carvalho, H. C., & Zângaro, R. A. (2020). Photobiomodulation: shining light on COVID-19. Photobiomodulation, Photomedicine, & Laser Surgery, 38(7), 395–397. https://doi.org/10.1089/photob.2020.4882
  • Flower, T. G., Buffalo, C. Z., Hooy, R. M., Allaire, M., Ren, X., & Hurley, J. H. (2020). Structure of SARS-CoV-2 ORF8, a rapidly evolving coronavirus protein implicated in immune evasion. Biorxiv.
  • Flower, T. G., Buffalo, C. Z., Hooy, R. M., Allaire, M., Ren, X., & Hurley, J. H. (2021). Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proceedings of the National Academy of Sciences, 118(2), 1-6. https://doi.org/10.1073/pnas.2021785118
  • Gordon, D. E., Jang, G. M., Bouhaddou, M., Xu, J., Obernier, K., White, K. M., O'Meara, M. J., Rezelj, V. V., Guo, J. Z., Swaney, D. L., Tummino, T. A., Hüttenhain, R., Kaake, R. M., Richards, A. L., Tutuncuoglu, B., Foussard, H., Batra, J., Haas, K., Modak, M., & Krogan, N. J. (2020). A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 583(7816), 459–468.
  • Hachim, A., Kavian, N., Cohen, C. A., Chin, A. W. H., Chu, D. K. W., Mok, C. K. P., Tsang, O. T. Y., Yeung, Y. C., Perera, R. A. P. M., Poon, L. L. M., Peiris, J. S. M., & Valkenburg, S. A. (2020). ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nature Immunology, 21(10), 1293–1301. https://doi.org/10.1038/s41590-020-0773-7
  • Hadjadj, J., Yatim, N., Barnabei, L., Corneau, A., Boussier, J., Smith, N., Péré, H., Charbit, B., Bondet, V., Chenevier-Gobeaux, C., Breillat, P., Carlier, N., Gauzit, R., Morbieu, C., Pène, F., Marin, N., Roche, N., Szwebel, T.-A., Merkling, S. H., & Terrier, B. (2020). Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science (New York, NY), 369(6504), 718–724. https://doi.org/10.1126/science.abc6027
  • Hussain, M., Shabbir, S., Amnaullah, A., Raza, F., Imdad, M. J., & Zahid, S. (2021). Immunoinformatic analysis of structural and epitope variations in spike and Orf8 proteins of SARS‐CoV‐2/B. 1.1. 7. Journal of Medical Virology, 93(7), 4461-4468.
  • Koifman, O. I., Ageeva, T. A., Beletskaya, I. P., Averin, A. D., Yakushev, A. A., Tomilova, L. G., Dubinina, T. V., Tsivadze, A. Y., Gorbunova, Y. G., Martynov, A. G., Konarev, D. V., Khasanov, S. S., Lyubovskaya, R. N., Lomova, T. N., Korolev, V. V., Zenkevich, E. I., Blaudeck, T., von Borczyskowski, C., Zahn, D. R., & Yurina, E. S. (2020). Macroheterocyclic compounds a key building block in new functional materials and molecular devices. Macroheterocycles, 13(4), 311–467. https://doi.org/10.6060/mhc200814k
  • Krishnan, B., Szymanska, A., & Gierasch, L. M. (2007). Site-specific fluorescent labeling of poly-histidine sequences using a metal-chelating cysteine. Chemical Biology & Drug Design, 69(1), 31–40. https://doi.org/10.1111/j.1747-0285.2007.00463.x
  • Lebedeva, N., Gubarev, Y., Koifman, M., & Koifman, O. (2020). The application of porphyrins and their analogues for inactivation of viruses. Molecules, 25(19), 4368. https://doi.org/10.3390/molecules25194368
  • Lebedeva, N. S., Gubarev, Y. A., & Koifman, O. I. (2015). Interaction between albumin and zinc tetra-4-[(4′-carboxy) phenylamino] phthalocyanine. Mendeleev Communications, 25(4), 307–309. https://doi.org/10.1016/j.mencom.2015.07.027
  • Lebedeva, N. S., Gubarev, Y. A., Yurina, E. S., & Syrbu, S. A. (2018). Features of interaction of tetraiodide meso-tetra (N-methyl-3-pyridyl) porphyrin with bovine serum albumin. Journal of Molecular Liquids, 265, 664–667. https://doi.org/10.1016/j.molliq.2018.06.030
  • Li, J.-Y., Liao, C.-H., Wang, Q., Tan, Y.-J., Luo, R., Qiu, Y., & Ge, X.-Y. (2020). The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway. Virus Research, 286, 198074. https://doi.org/10.1016/j.virusres.2020.198074
  • Liu, W., & Li, H. (2020). COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit heme metabolism. https://doi.org/10.26434/chemrxiv-2021-dtpv3-v11
  • Mohammad, S., Bouchama, A., Mohammad Alharbi, B., Rashid, M., Saleem Khatlani, T., Gaber, N. S., & Malik, S. S. (2020). SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: Genomic divergence and functional convergence. Pathogens, 9(9), 677. https://doi.org/10.3390/pathogens9090677
  • Neese, F. (2018). Software update: the ORCA program system, version 4.0. Wiley Interdisciplinary Reviews: Computational Molecular Science, 8, e1327.
  • Otvagin, V. F., Nyuchev, A. V., Kuzmina, N. S., Grishin, I. D., Gavryushin, A. E., Romanenko, Y. V., Koifman, O. I., Belykh, D. V., Peskova, N. N., Shilyagina, N. Y., Balalaeva, I. V., & Fedorov, A. Y. (2018). Synthesis and biological evaluation of new water-soluble photoactive chlorin conjugate for targeted delivery. European Journal of Medicinal Chemistry, 144, 740–750. https://doi.org/10.1016/j.ejmech.2017.12.062
  • Park, M. D. (2020). Immune evasion via SARS-CoV-2 ORF8 protein? Nature Reviews: Immunology, 20(7), 408–408. https://doi.org/10.1038/s41577-020-0360-z
  • Pereira, F. (2020). Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene. Infection, Genetics & Evolution: Journal of Molecular Epidemiology & Evolutionary Genetics in Infectious Diseases, 85, 104525. https://doi.org/10.1016/j.meegid.2020.104525
  • Ren, Y., Shu, T., Wu, D., Mu, J., Wang, C., Huang, M., Han, Y., Zhang, X.-Y., Zhou, W., Qiu, Y., & Zhou, X. (2020). The ORF3a protein of SARS-CoV-2 induces apoptosis in cells. Cellular & Molecular Immunology, 17(8), 881–883. https://doi.org/10.1038/s41423-020-0485-9
  • Rentzsch, R., & Renard, B. Y. (2015). Docking small peptides remains a great challenge: An assessment using AutoDock Vina. Briefings in Bioinformatics, 16(6), 1045–1056. https://doi.org/10.1093/bib/bbv008
  • Tan, Y., Schneider, T., Leong, M., Aravind, L., & Zhang, D. (2020). Novel immunoglobulin domain proteins provide insights into evolution and pathogenesis of SARS-CoV-2-related viruses. MBio, 11(3), e00760-20. https://doi.org/10.1128/mBio.00760-20
  • Torti, L., Maffei, L., Sorrentino, F., De Fabritiis, P., Miceli, R., & Abruzzese, E. (2020). Impact of SARS CoV-2 in hemoglobinopathies with immune disfunction and epidemiology. A protective mechanism from beta chain hemoglobin defects? Mediterranean Journal of Hematology & Infectious Diseases, 12(1), e2020052. https://doi.org/10.4084/mjhid.2020.052
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vankadari, N. (2020). Overwhelming mutations or SNPs of SARS-CoV-2: A point of caution. Gene, 752, 144792. https://doi.org/10.1016/j.gene.2020.144792
  • Velazquez-Salinas, L., Zarate, S., Eberl, S., Gladue, D. P., Novella, I., & Borca, M. V. (2020). Positive Selection of ORF1ab, ORF3a, and ORF8 Genes Drives the Early Evolutionary Trends of SARS-CoV-2 During the 2020 COVID-19 Pandemic. Frontiers in microbiology, 11, 2592. https://doi.org/10.3389/fmicb.2020.550674.
  • Wang, X., Lam, J.-Y., Wong, W.-M., Yuen, C.-K., Cai, J.-P., Au, S. W.-N., Chan, J. F.-W., To, K. K., Kok, K.-H., & Yuen, K.-Y. (2020). Accurate diagnosis of COVID-19 by a novel immunogenic secreted SARS-CoV-2 orf8 protein. Mbio, 11(5), e02431-20. https://doi.org/10.1128/mBio.02431-20
  • Whitlock, H. W., Jr, Hanauer, R., Oester, M., & Bower, B. (1969). Diimide reduction of porphyrins. Journal of the American Chemical Society, 91(26), 7485–7489. https://doi.org/10.1021/ja01054a044
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Zhang, C., Zheng, W., Huang, X., Bell, E. W., Zhou, X., & Zhang, Y. (2020). Protein structure and sequence reanalysis of 2019-nCoV genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and HIV-1. Journal of Proteome Research, 19(4), 1351–1360. https://doi.org/10.1021/acs.jproteome.0c00129
  • Zhang, Y., Zhang, J., Chen, Y., Luo, B., Yuan, Y., Huang, F., Yang, T., Yu, F., Liu, J., & Liu, B. (2021). The ORF8 protein of SARS-CoV-2 mediates immune evasion through potently down-regulating MHC-I.Proceedings of the National Academy of Sciences, 118(23). https://doi.org/10.1073/pnas.2024202118
  • Zheng, W., Zhang, C., Li, Y., Pearce, R., Bell, E. W., & Zhang, Y. (2021). Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods, 1(3), 100014. https://doi.org/10.1016/j.crmeth.2021.100014
  • Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q., Chen, Y., Shen, X.-R., Wang, X., & Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
  • Zhu, Z., Lian, X., Su, X., Wu, W., Marraro, G. A., & Zeng, Y. (2020). From SARS and MERS to COVID-19: A brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respiratory Research, 21(1), 1–14. https://doi.org/10.1186/s12931-020-01479-w
  • Zinzula, L. (2021). Lost in deletion: The enigmatic ORF8 protein of SARS-CoV-2. Biochemical & Biophysical Research Communications, 538, 116–124. https://doi.org/10.1016/j.bbrc.2020.10.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.