240
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Phthalide derivatives as dihydrofolate reductase inhibitors for malaria: molecular docking and molecular dynamics studies

ORCID Icon, ORCID Icon & ORCID Icon
Pages 5127-5137 | Received 07 Feb 2022, Accepted 15 May 2022, Published online: 28 May 2022

References

  • Ahmed, A., Das, M. K., Dev, V., Saifi, M. A., Wajihullah., & Y. D., Sharma. (2006). Quadruple mutations in dihydrofolate reductase of Plasmodium falciparum isolates from Car Nicobar Island, India. Antimicrobial Agents and Chemotherapy, 50, 1546–1549. https://doi.org/10.1128/AAC.50.4.1546-1549.2006
  • Adane, L., Bhagat, S., Arfeen, M., Bhatia, S., Sirawaraporn, R., Sirawaraporn, W., Chakraborti, A. K., & Bharatam, P. V. (2014). Design and synthesis of guanylthiourea derivatives as potential inhibitors of Plasmodium falciparum dihydrofolate reductase enzyme. Bioorganic & Medicinal Chemistry Letters, 24(2), 613–617. https://doi.org/10.1016/j.bmcl.2013.12.009
  • A-Elbasit, I. E., Alifrangis, M., Khalil, I. F., Bygbjerg, I. C., Masuadi, E. M., Elbashir, M. I., & Giha, H. A. (2007). The implication of dihydrofolate reductase and dihydropteroate synthetase gene mutations in modification of Plasmodium falciparum characteristics. Malaria Journal, 6, 1–8. https://doi.org/10.1186/1475-2875-6-108.
  • Aguiar, A. C. C., Murce, E., Cortopassi, W. A., Pimentel, A. S., Almeida, M., Barros, D. C. S., Guedes, J. S., Meneghetti, M. R., & Krettli, A. U. (2018). Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. International Journal for Parasitology. Drugs and Drug Resistance, 8(3), 459–464. https://doi.org/10.1016/j.ijpddr.2018.10.002
  • Almeida, C., Kehraus, S., Prudêncio, M., & König, G. M. (2011). Marilones A-C, phthalides from the sponge-derived fungus Stachylidium sp. Beilstein Journal of Organic Chemistry, 7, 1636–1642. https://doi.org/10.3762/bjoc.7.192
  • Alzain, A. A., Ismail, A., Fadlelmola, M., Mohamed, M. A., Mahjoub, M., Makki, A. A., & Elsaman, T. (2022). De novo design of novel spike glycoprotein inhibitors using e-pharmacophore modeling, molecular hybridization, ADMET, quantum mechanics and molecular dynamics studies for COVID-19. Pakistan Journal of Pharmaceutical Sciences, 35(1(Supplementary), 313–321.
  • Balabadra, S., Kotni, M. K., Manga, V., Allanki, A. D., Prasad, R., & Sijwali, P. S. (2017). Synthesis and evaluation of naphthyl bearing 1,2,3-triazole analogs as antiplasmodial agents, cytotoxicity and docking studies. Bioorganic & Medicinal Chemistry, 25(1), 221–232. https://doi.org/10.1016/j.bmc.2016.10.029
  • Balikagala, B., Fukuda, N., Ikeda, M., Katuro, O. T., Tachibana, S.-I., Yamauchi, M., Opio, W., Emoto, S., Anywar, D. A., Kimura, E., Palacpac, N. M. Q., Odongo-Aginya, E. I., Ogwang, M., Horii, T., & Mita, T. (2021). Evidence of artemisinin-resistant malaria in Africa. New England Journal of Medicine, 385(13), 1163–1171. https://doi.org/10.1056/NEJMoa2101746
  • Bekhit, A. A., Saudi, M. N., Hassan, A. M. M., Fahmy, S. M., Ibrahim, T. M., Ghareeb, D., El-Seidy, A. M., Nasralla, S. N., & Bekhit, A. (2019). Synthesis, in silico experiments and biological evaluation of 1,3,4-trisubstituted pyrazole derivatives as antimalarial agents. European Journal of Medicinal Chemistry, 163, 353–366. https://doi.org/10.1016/j.ejmech.2018.11.067
  • Bhagat, S., Arfeen, M., Das, G., Ramkumar, M., Khan, S. I., Tekwani, B. L., & Bharatam, P. V. (2019). Design, synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea derivatives as antimalarial agents. Bioorganic Chemistry, 91, 103094. https://doi.org/10.1016/j.bioorg.2019.103094
  • Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., & Prinsep, M. R. (2014). Marine natural products. Natural Product Reports, 31(2), 160–258. https://doi.org/10.1039/c3np70117d
  • Bommu, U. D., Konidala, K. K., Pabbaraju, N., & Yeguvapalli, S. (2017). Ligand-based virtual screening, molecular docking, QSAR and pharmacophore analysis of quercetin-associated potential novel analogs against epidermal growth factor receptor. Journal of Receptor and Signal Transduction Research, 37(6), 600–610. https://doi.org/10.1080/10799893.2017.1377237
  • Burrows, J. N., Duparc, S., Gutteridge, W. E., Van Huijsduijnen, R. H., Kaszubska, W., Macintyre, F., Mazzuri, S., Möhrle, J. J., & Wells, T. N. C. (2017). New developments in anti‑malarial target candidate and product profiles. Malaria Journal, 16, 1–29. https://doi.org/10.1186/s12936-016-1675-x.
  • Choowongkomon, K., Theppabutr, S., Songtawee, N., Day, N. P. J., White, N. J., Woodrow, C. J., & Imwong, M. (2010). Computational analysis of binding between malarial dihydrofolate reductases and anti-folates. Malaria Journal, 9, 65. https://doi.org/10.1186/1475-2875-9-65.
  • Chughlay, M. F., Gaaloul, M. E., Donini, C., Campo, B., Berghmans, P. J., Lucardie, A., Marx, M. W., Cherkaoui-Rbati, M. H., Langdon, G., Angulo-Barturen, I., Viera, S., Rosanas-Urgell, A., Van Geertruyden, J. P., & Chalon, S. (2021). Chemoprotective antimalarial activity of p218 against plasmodium falciparum: A randomized, placebo-controlled volunteer infection study. The American Journal of Tropical Medicine and Hygiene, 104(4), 1348–1358. https://doi.org/10.4269/ajtmh.20-1165
  • Chughlay, M. F., Rossignol, E., Donini, C., Gaaloul, M. E., Lorch, U., Coates, S., Langdon, G., Hammond, T., Möhrle, J., & Chalon, S. (2020). First-in-human clinical trial to assess the safety, tolerability and pharmacokinetics of P218, a novel candidate for malaria chemoprotection. British Journal of Clinical Pharmacology, 86(6), 1113–1124. https://doi.org/10.1111/bcp.14219
  • Coban, C. (2020). Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information.
  • Elshemy, H. A. H., Zaki, M. A., Mohamed, E. I., Khan, S. I., & Lamie, P. F. (2020). A multicomponent reaction to design antimalarial pyridyl-indole derivatives: Synthesis, biological activities and molecular docking. Bioorganic Chemistry, 97, 103673. https://doi.org/10.1016/j.bioorg.2020.103673
  • Fogel, G. B., Cheung, M., Pittman, E., & Hecht, D. (2008). In silico screening against wild-type and mutant Plasmodium falciparum dihydrofolate reductase. Journal of Molecular Graphics & Modelling, 26(7), 1145–1152. https://doi.org/10.1016/j.jmgm.2007.10.006
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Ibraheem, W., Chaar, C., Camiade, E., Hervé, V., Fouquenet, D., Roux, A.-E., Si-Tahar, M., Ahmed, E., Thibonnet, J., Thiery, E., & Petrignet, J. (2022). Synthesis, antibacterial and cytotoxic evaluation of cytosporone E and analogs. Journal of Molecular Structure, 1252, 132135. https://doi.org/10.1016/j.molstruc.2021.132135
  • Ibraheem, W., Wils, Q., Camiade, E., Ahmed, E., Thibonnet, J., Thiery, E., & Petrignet, J. (2021). Synthesis and antibacterial activity of racemic paecilocin A and its derivatives against methicillin-sensitive and -resistant Staphylococcus aureus. Tetrahedron Letters, 67, 152888. https://doi.org/10.1016/j.tetlet.2021.152888
  • Suma, K. B., Kumari, A., Shetty, D., Fernandes, E., Chethan, D. V., Jays, J., & Murahari, M. (2020). Structure based pharmacophore modelling approach for the design of azaindole derivatives as DprE1 inhibitors for tuberculosis. Journal of Molecular Graphics & Modelling, 101, 107718. https://doi.org/10.1016/j.jmgm.2020.107718
  • Kitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. Nature Reviews. Drug Discovery, 3(11), 935–949. https://doi.org/10.1038/nrd1549
  • Kumar, A., Gahlawat, S. K., & Singh, V. (2020). Comparative analysis of Plasmodium falciparum dihydrofolate-reductase gene sequences from different regions of India. Heliyon, 6(4), e03715. https://doi.org/10.1016/j.heliyon.2020.e03715
  • Lau, T. Y., Sylvi, M., & William, T. (2013). Mutational analysis of Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase genes in the interior division of Sabah, Malaysia. Malaria Journal, 12, 445–445. https://doi.org/10.1186/1475-2875-12-445.
  • Maitarad, P., Saparpakorn, P., Hannongbua, S., Kamchonwongpaisan, S., Tarnchompoo, B., & Yuthavong, Y. (2009). Particular interaction between pyrimethamine derivatives and quadruple mutant type dihydrofolate reductase of Plasmodium falciparum: CoMFA and quantum chemical calculations studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(2), 471–479. https://doi.org/10.1080/14756360802201223
  • McCollum, A. M., Poe, A. C., Hamel, M., Huber, C., Zhou, Z., Shi, Y. P., Ouma, P., Vulule, J., Bloland, P., Slutsker, L., Barnwell, J. W., Udhayakumar, V., & Escalante, A. A. (2006). Antifolate resistance in Plasmodium falciparum: Multiple origins and identification of novel DHFR alleles. The Journal of Infectious Diseases, 194(2), 189–197. https://doi.org/10.1086/504687
  • Mharakurwa, S., Kumwenda, T., Mkulama, M. A. P., Musapa, M., Chishimba, S., Shiff, C. J., Sullivan, D. J., Thuma, P. E., Liu, K., & Agre, P. (2011). Malaria antifolate resistance with contrasting Plasmodium falciparum dihydrofolate reductase (DHFR) polymorphisms in humans and Anopheles mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18796–18801. https://doi.org/10.1073/pnas.1116162108
  • Mogire, R. M., Akala, H. M., Macharia, R. W., Juma, D. W., Cheruiyot, C., Andagalu, B., Brown, M. L., El-shemy, H. A., & Nyanjom, G. (2017). Target-similarity search using Plasmodium falciparum proteome identifies approved drugs with anti-malarial activity and their possible targets. PLoS One, 12, 1–24.
  • Osman, E. A., Abdalla, M. A., Abdelraheem, M. O., Ali, M. F., Osman, S. A., Tanir, Y. M., Abdelrahman, M., Ibraheem, W., & Alzain, A. A. (2021). Design of novel coumarins as potent Mcl-1 inhibitors for cancer treatment guided by 3D-QSAR, molecular docking and molecular dynamics. Informatics in Medicine Unlocked, 26, 100765. https://doi.org/10.1016/j.imu.2021.100765
  • Owoloye, A., Olufemi, M., Idowu, E. T., & Oyebola, K. M. (2021). Prevalence of potential mediators of artemisinin resistance in African isolates of Plasmodium falciparum. Malaria Journal, 20, 1–12. https://doi.org/10.1186/s12936-021-03987-6.
  • Peyrottes, S. (2012). Choline analogues in malaria chemotherapy. Current Pharmaceutical Design, 18,3454–3466. https://doi.org/10.2174/138161212801327338.
  • Remcho, T. P., Guggilapu, S. D., Cruz, P., Nardone, G. A., Heffernan, G., O’Connor, R. D., Bewley, C. A., Wellems, T. E., & Lane, K. D. (2020). Regioisomerization of antimalarial drug WR99210 explains the inactivity of a commercial stock. Antimicrobial Agents and Chemotherapy, 65, 1385-20. https://doi.org/10.1128/AAC.01385-20.
  • Rocamora, F., Gupta, P., Istvan, E. S., Luth, M. R., Carpenter, E. F., Kümpornsin, K., Sasaki, E., Calla, J., Mittal, N., Carolino, K., Owen, E., Llinás, M., Ottilie, S., Goldberg, D. E., Lee, M. C. S., & Winzeler, E. A. (2021). PfMFR3: A multidrug-resistant modulator in Plasmodium falciparum. ACS Infectious Diseases, 7(4), 811–825. https://doi.org/10.1021/acsinfecdis.0c00676
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Salentin, S., Adasme, M. F., Heinrich, J. C., Haupt, V. J., Daminelli, S., Zhang, Y., & Schroeder, M. (2017). From malaria to cancer: Computational drug repositioning of amodiaquine using PLIP interaction patterns. Scientific Reports, 7, 1–13. https://doi.org/10.1038/s41598-017-11924-4.
  • Shibeshi, M. A., Kifle, Z. D., & Atnafie, A. S. (2020). Antimalarial drug resistance and novel targets for antimalarial drug discovery. Infection and Drug Resistance, 13, 4047–4060.
  • Stefanucci, A., Marrone, A., & Agamennone, M. (2015). Investigation of the N-BP binding at FPPS by combined computational approaches. Medicinal Chemistry, 11(5), 417–431. https://doi.org/10.2174/1573406410666141226132630
  • Stefanucci, A., Pinnen, F., Feliciani, F., Cacciatore, I., Lucente, G., & Mollica, A. (2011). Conformationally constrained histidines in the design of peptidomimetics: Strategies for the χ-space control. International Journal of Molecular Sciences, 12(5), 2853–2890. https://doi.org/10.3390/ijms12052853
  • Sumam de Oliveira, D., Kronenberger, T., Palmisano, G., Wrenger, C., & de Souza, E. E. (2021). Targeting SUMOylation in Plasmodium as a potential target for malaria therapy. Frontiers in Cellular and Infection Microbiology, 11, 685866–685867. https://doi.org/10.3389/fcimb.2021.685866.
  • Syahri, J., Yuanita, E., Nurohmah, B. A., Armunanto, R., & Purwono, B. (2017). Chalcone analogue as potent anti-malarial compounds against Plasmodium falciparum: Synthesis, biological evaluation, and docking simulation study. Asian Pacific Journal of Tropical Biomedicine, 7(8), 675–679. https://doi.org/10.1016/j.apjtb.2017.07.004
  • Tian, S., Wang, J., Li, Y., Li, D., Xu, L., & Hou, T. (2015). The application of in silico drug-likeness predictions in pharmaceutical research. Advanced Drug Delivery Reviews, 86, 2–10. https://doi.org/10.1016/j.addr.2015.01.009
  • Vivo, M. D., Masetti, M., Bottegoni, G., & Cavalli, A. (2016). Role of molecular dynamics and related methods in drug discovery. Journal of Medicinal Chemistry, 59(9), 4035–4061. https://doi.org/10.1021/acs.jmedchem.5b01684
  • von Delius, M., Le, C. M., Ellinger, B., Kuzikov, M., Gul, S., & Dong, V. M. (2017). Synthesis and biological activity of octaketides from the cytosporone family. Israel Journal of Chemistry, 57(10-11), 975–981. https://doi.org/10.1002/ijch.201700023
  • Yuthavong, Y., Tarnchompoo, B., Vilaivan, T., Chitnumsub, P., Kamchonwongpaisan, S., Charman, S. A., Mclennan, D. N., White, K. L., Vivas, L., Bongard, E., Thongphanchang, C., Taweechai, S., Vanichtanankul, J., Rattanajak, R., Arwon, U., Fantauzzi, P., Yuvaniyama, J., Charman, W. N., & Matthews, D. (2013). Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target. Applied biological sciences, 109(42), 16823-16828. https://doi.org/10.1073/pnas.1204556109/-/DCSupplemental.
  • Yuvaniyama, J., Chitnumsub, P., Kamchonwongpaisan, S., Vanichtanankul, J., Sirawaraporn, W., Taylor, P., Walkinshaw, M. D., & Yuthavong, Y. (2003). Insights into antifolate resistance from malarial DHFR-TS structures. Nature Structural Biology, 10(5), 357–365. https://doi.org/10.1038/nsb921

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.