790
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis, structural characterization, DFT calculations, molecular docking, and molecular dynamics simulations of a novel ferrocene derivative to unravel its potential antitumor activity

, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5199-5216 | Received 11 Mar 2022, Accepted 20 May 2022, Published online: 08 Jun 2022

References

  • Abdallah, A. E., Alesawy, M. S., Eissa, S. I., El-Fakharany, E. M., Kalaba, M. H., Sharaf, M. H., Abo Shama, N. M., Mahmoud, S. H., Mostafa, A., Al-Karmalawy, A. A., & Elkady, H. (2021). Design and synthesis of new 4-(2-nitrophenoxy)benzamide derivatives as potential antiviral agents: Molecular modeling and in vitro antiviral screening. New Journal of Chemistry, 45(36), 16557–16571. https://doi.org/10.1039/D1NJ02710G
  • Abo Elmaaty, A., Hamed, M. I. A., Ismail, M. I., Elkaeed, E. B., Abulkhair, H. S., Khattab, M., & Al-Karmalawy, A. A. (2021). Computational insights on the potential of some NSAIDs for treating COVID-19: Priority set and lead optimization. Molecules, 26(12), 3772. https://doi.org/10.3390/molecules26123772
  • Alesawy, M. S., Al, Karmalawy, A. A., Elkaeed, E. B., Alswah, M., Belal, A., Taghour, M. S., & Eissa, I H J A. d. P. (2020). Design and discovery of new 1, 2, 4‐triazolo [4, 3‐c] quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Archiv Der Pharmazie, 354, e2000237. https://doi.org/10.1002/ardp.202000237
  • Al-Karmalawy, A. A., Alnajjar, R., Dahab, M., Metwaly, A., & Eissa, I. (2021). Molecular docking and dynamics simulations reveal the potential of anti-HCV drugs to inhibit COVID-19 main protease. Pharmaceutical Sciences, 27, S109-S121.
  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor. Frontiers in Chemistry9(227). https://doi.org/10.3389/fchem.2021.661230
  • Al-Karmalawy, A. A., & Khattab, M. J. N. J. O. C. (2020). Molecular modelling of mebendazole polymorphs as a potential colchicine binding site inhibitor. New Journal of Chemistry, 44(33), 13990–13996. https://doi.org/10.1039/D0NJ02844D
  • Alnajjar, R., Mostafa, A., Kandeil, A., & Al-Karmalawy, A. A. J. H. (2020). Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Heliyon, 6(12), e05641. https://doi.org/10.1016/j.heliyon.2020.e05641
  • Antar, S., Al-Karmalawy, A. A., Mourad, A., Mourad, M., Elbadry, M., Saber, S., & Khodir, A. (2022). Protective effects of mirazid on gentamicin-induced nephrotoxicity in rats through antioxidant, anti-inflammatory, JNK1/iNOS, and apoptotic pathways; novel mechanistic insights. Pharmaceutical Sciences. https://doi.org/10.34172/PS.2022.4
  • Astruc, D. (2017). Why is ferrocene so exceptional? European Journal of Inorganic Chemistry, 2017(1), 6–29. https://doi.org/10.1002/ejic.201600983
  • Aziz, M. A., Shehab, W. S., Al-Karmalawy, A. A., EL-Farargy, A. F., & Abdellattif, M. H. (2021). Design, synthesis, biological evaluation, 2D-QSAR modeling, and molecular docking studies of novel 1H-3-indolyl derivatives as significant antioxidants. International Journal of Molecular Sciences, 22(19), 10396. https://doi.org/10.3390/ijms221910396
  • Babgi, B. A., Abdellattif, M. H., Hussien, M. A., & Eltayeb, N. E. (2019). Exploring DNA-binding and anticancer properties of benzoimidazolyl-ferrocene dye. Journal of Molecular Structure, 1198, 126918. https://doi.org/10.1016/j.molstruc.2019.126918
  • Bernardo, O., González-Pelayo, S., & López, L. A. Synthesis and applications of ferrocene-fused nitrogen heterocycles. European Journal of Inorganic Chemistry, 8. https://doi.org/10.1002/ejic.202100911
  • Brunel, D., Noirbent, G., & Dumur, F. (2019). Ferrocene: An unrivaled electroactive building block for the design of push-pull dyes with near-infrared and infrared absorptions. Dyes & Pigments170, 107611. https://doi.org/10.1016/j.dyepig.2019.107611
  • C. C. G. Inc. (2016). Molecular operating environment (MOE): Chemical Computing Group Inc 1010 Sherbooke St. 910, Montreal.
  • Celedón, S., Hamon, P., Artigas, V., Fuentealba, M., Kahlal, S., Carrillo, D., Saillard, J.-Y., Hamon, J.-R., & Manzur, C. (2022). Ferrocene functionalized enantiomerically pure Schiff bases and their Zn(ii) and Pd(ii) complexes: A spectroscopic, crystallographic, electrochemical and computational investigation. New Journal of Chemistry, 46(8), 3948–3960. https://doi.org/10.1039/D1NJ06106B
  • Cheng, H., Ma, C., Chen, Y., Ni, H-l., Feng, C., Wang, B-q., Zhao, K-q., Yu, W-h., & Hu, P. (2017). Monosubstituted ferrocene liquid crystals containing click triazole with a wide nematic phase temperature range. Liquid Crystals, 44(9), 1450–1461. https://doi.org/10.1080/02678292.2017.1282047
  • Citalopram e. (2016). In J. K. Aronson(Ed.), Meyler's side effects of drugs (16th ed.) (pp. 383–387). Elsevier.
  • de Melo, F. M., Fante, A. S., Zamarion, V. d. M., & Toma, H. E. (2019). SERS-active carboxymethyl cellulose-based gold nanoparticles: high-stability in hypersaline solution and selective response in the Hofmeister series. New Journal of Chemistry, 43(21), 8093–8100. https://doi.org/10.1039/C9NJ01552C
  • Deschenaux, R., Schweissguth, M., & Levelut, A.-M. (1996). Electron-transfer induced mesomorphism in the ferrocene–ferrocenium redox system: First ferrocenium-containing thermotropic liquid crystal. Chemical Communications, 11, 1275–1276. https://doi.org/10.1039/CC9960001275
  • Deschenaux, R., Schweissguth, M., Vilches, M.-T., Levelut, A.-M., Hautot, D., Long, G. J., & Luneau, D. (1999). Switchable mesomorphic materials based on the ferrocene − ferrocenium redox system: Electron-transfer-generated columnar liquid-crystalline phases. Organometallics, 18(26), 5553–5559. https://doi.org/10.1021/om9905308
  • Diab, R. T., Abdel-Sami, Z. K., Abdel-Aal, E. H., Al-Karmalawy, A. A., & Abo-Dya, N. E. (2021). Design and synthesis of a new series of 3,5-disubstituted-1,2,4-oxadiazoles as potential colchicine binding site inhibitors: Antiproliferative activity, molecular docking, and SAR studies. New Journal of Chemistry, 45(46), 21657–21669. https://doi.org/10.1039/D1NJ02885E
  • El-Demerdash, A., Al-Karmalawy, A. A., Abdel-Aziz, T. M., Elhady, S. S., Darwish, K. M., & Hassan, A. H. E. (2021). Investigating the structure-activity relationship of marine natural polyketides as promising SARS-CoV-2 main protease inhibitors. RSC Advances, 11(50), 31339–31363. https://doi.org/10.1039/D1RA05817G
  • Elebeedy, D., Badawy, I., Elmaaty, A. A., Saleh, M. M., Kandeil, A., Ghanem, A., & Al-Karmalawy, A. A. (2021). In vitro and computational insights revealing the potential inhibitory effect of Tanshinone IIA against influenza A virus. Computers in Biology & Medicine, 141, 105149. https://doi.org/10.1016/j.compbiomed.2021.105149
  • Elebeedy, D., Elkhatib, W. F., Kandeil, A., Ghanem, A., Kutkat, O., Alnajjar, R., Saleh, M. A., Abd El Maksoud, A. I., Badawy, I., & Al-Karmalawy, A. A. (2021). Anti-SARS-CoV-2 activities of tanshinone IIA, carnosic acid, rosmarinic acid, salvianolic acid, baicalein, and glycyrrhetinic acid between computational and in vitro insights. RSC Advances, 11(47), 29267–29286. https://doi.org/10.1039/D1RA05268C
  • El‐Helby, A. G. A., Sakr, H., Eissa, I. H., Abulkhair, H., Al‐Karmalawy, A. A., & El‐Adl, K. J. A. d P. (2019). Design, synthesis, molecular docking, and anticancer activity of benzoxazole derivatives as VEGFR‐2 inhibitors. Archiv Der Pharmazie, 352(10), 1900113. https://doi.org/10.1002/ardp.201900113
  • El‐Helby, A. G. A., Sakr, H., Eissa, I. H., Al‐Karmalawy, A. A., & El‐Adl, K. (2019). Benzoxazole/benzothiazole‐derived VEGFR‐2 inhibitors: Design, synthesis, molecular docking, and anticancer evaluations. Archiv Der Pharmazie, 352(12), 1900178. https://doi.org/10.1002/ardp.201900178
  • Elia, S. G., Al-Karmalawy, A. A., Nasr, M. Y., & Elshal, M. F. (2021). Loperamide potentiates doxorubicin sensitivity in triple-negative breast cancer cells by targeting MDR1 and JNK and suppressing mTOR and Bcl-2: In vitro and molecular docking study. Journal of Biochemical & Molecular Toxicology, n/a(n/a), e22938. https://doi.org/10.1002/jbt.22938
  • Elmaaty, A. A., Alnajjar, R., Hamed, M. I., Khattab, M., Khalifa, M. M., & Al-Karmalawy, A. A. (2021). Revisiting activity of some glucocorticoids as a potential inhibitor of SARS-CoV-2 main protease: Theoretical study. RSC Advances, 11(17), 10027–10042. https://doi.org/10.1039/d0ra10674g
  • Elmaaty, A. A., Darwish, K. M., Chrouda, A., Boseila, A. A., Tantawy, M. A., Elhady, S. S., Shaik, A. B., Mustafa, M., & Al-Karmalawy, A. A. (2022). In silico and in vitro studies for benzimidazole anthelmintics repurposing as VEGFR-2 antagonists: Novel mebendazole-loaded mixed micelles with enhanced dissolution and anticancer activity. ACS Omega, 7(1), 875–899. https://doi.org/10.1021/acsomega.1c05519
  • Elmaaty, A. A., Darwish, K. M., Khattab, M., Elhady, S. S., Salah, M., Hamed, M. I. A., Al‐Karmalawy, A. A., & Saleh, M. M. (2021). In a search for potential drug candidates for combating COVID-19: Computational study revealed salvianolic acid B as a potential therapeutic targeting 3CLpro and spike proteins. Journal of Biomolecular Structure & Dynamics, 1–28. https://doi.org/10.1080/07391102.2021.1918256
  • El-Masry, R. M., Al-Karmalawy, A. A., Alnajjar, R., Mahmoud, S. H., Mostafa, A., Kadry, H. H., Abou-Seri, S. M., & Taher, A. T. (2022). Newly synthesized series of oxoindole-oxadiazole conjugates as potential anti-SARS-CoV-2 Agents: In Silico and in vitro studies. New Journal of Chemistry, 46(11), 5078–5090. https://doi.org/10.1039/D1NJ04816C
  • El-Naggar, A. M., Hassan, A. M. A., Elkaeed, E. B., Alesawy, M. S., Al., & Karmalawy, A. A. (2022). Design, synthesis, and SAR studies of novel 4-methoxyphenyl pyrazole and pyrimidine derivatives as potential dual tyrosine kinase inhibitors targeting both EGFR and VEGFR-2. Bioorganic Chemistry, 123, 105770. https://doi.org/10.1016/j.bioorg.2022.105770
  • El-Shershaby, M. H., El-Gamal, K. M., Bayoumi, A. H., El-Adl, K., Alswah, M., Ahmed, H. E. A., Al-Karmalamy, A. A., & Abulkhair, H. S. (2021a). The antimicrobial potential and pharmacokinetic profiles of novel quinoline-based scaffolds: synthesis and in silico mechanistic studies as dual DNA gyrase and DHFR inhibitors. New Journal of Chemistry, 45(31), 13986–14004. https://doi.org/10.1039/D1NJ02838C
  • El-Shershaby, M. H., Ghiaty, A., Bayoumi, A. H., Al-Karmalawy, A. A., Husseiny, E. M., El-Zoghbi, M. S., & Abulkhair, H. S. (2021b). From triazolophthalazines to triazoloquinazolines: A bioisosterism-guided approach toward the identification of novel PCAF inhibitors with potential anticancer activity. Bioorganic & Medicinal Chemistry, 42, 116266. https://doi.org/10.1016/j.bmc.2021.116266
  • Ezz Eldin, R. R., Al-Karmalawy, A. A., Alotaibi, M. H., & Saleh, M. A. (2022). Quinoxaline derivatives as a promising scaffold for breast cancer treatment. New Journal of Chemistry, 46, 9975–9984. https://doi.org/10.1039/D2NJ00050D
  • Ezz Eldin, R. R., Saleh, M. A., Alotaibi, M. H., Alsuair, R. K., Alzahrani, Y. A., Alshehri, F. A., Mohamed, A. F., Hafez, S. M., Althoqapy, A. A., Khirala, S. K., Amin, M. M., A F, Y., AbdElwahab, A. H., Alesawy, M. S., Elmaaty, A. A., & Al-Karmalawy, A. A. (2022). Ligand-based design and synthesis of N'-benzylidene-3,4-dimethoxybenzohydrazide derivatives as potential antimicrobial agents: Evaluation by in vitro, in vivo, and in silico approaches with SAR studies. Journal of Enzyme Inhibition & Medicinal Chemistry, 37(1), 1098–1119. https://doi.org/10.1080/14756366.2022.2063282
  • Floryk, D., & Huberman, E. (2006). Mycophenolic acid-induced replication arrest, differentiation markers and cell death of androgen-independent prostate cancer cells DU145. Cancer Letters, 231(1), 20–29. https://doi.org/10.1016/j.canlet.2005.01.006
  • Gaber, A. A., El‐Morsy, A. M., Sherbiny, F. F., Bayoumi, A. H., El‐Gamal, K. M., El‐Adl, K., Al‐Karmalawy, A. A., Ezz Eldin, R. R., Saleh, M. A., & Abulkhair, H. S. (2021). Pharmacophore-linked pyrazolo[3,4-d]pyrimidines as EGFR-TK inhibitors: Synthesis, anticancer evaluation, pharmacokinetics, and in silico mechanistic studies. Archiv Der Pharmazie. https://doi.org/10.1002/ardp.202100258
  • García-Barrantes, P. M., Lamoureux, G. V., Pérez, A. L., García-Sánchez, R. N., Martínez, A. R., & San Feliciano, A. (2013). Synthesis and biological evaluation of novel ferrocene-naphthoquinones as antiplasmodial agents. European Journal of Medicinal Chemistry, 70, 548–557. https://doi.org/10.1016/j.ejmech.2013.10.011
  • Gazizov, M. B., Ivanova, S. Y., Bagauva, L. R., Khairullin, R. A., & Musin, R. Z. (2016). Synthesis and properties of 4-(dibromomethyl)benzenecarbaldehyde. Tetrahedron Letters, 57(2), 210–212. https://doi.org/10.1016/j.tetlet.2015.12.005
  • Ghanem, A., Al-Karmalawy, A. A., Abd El Maksoud, A. I., Hanafy, S. M., Emara, H. A., Saleh, R. M., & Elshal, M. F. (2022). Rumex vesicarius L. extract improves the efficacy of doxorubicin in triple-negative breast cancer through inhibiting Bcl2, mTOR, JNK1 and augmenting p21 expression. Informatics in Medicine Unlocked, 29, 100869. https://doi.org/10.1016/j.imu.2022.100869
  • Görmen, M., Pigeon, P., Top, S., Hillard, E. A., Huché, M., Hartinger, C. G., de Montigny, F., Plamont, M.-A., Vessières, A., & Jaouen, G. (2010). Synthesis, cytotoxicity, and COMPARE analysis of ferrocene and [3]ferrocenophane tetrasubstituted olefin derivatives against human cancer cells. ChemMedChem. 5(12), 2039–2050. https://doi.org/10.1002/cmdc.201000286
  • Griffith, W. P., Jolliffe, J. M., Ley, S. V., Springhorn, K. F., & Tiffin, P. D. (1992). Oxidation of Activated Halides to Aldehydes and Ketones by N-Methylmorpholine-N-oxide. Synthetic Communications, 22(13), 1967–1971. https://doi.org/10.1080/00397919208021328
  • Hamed, M. I. A., Darwish, K. M., Soltane, R., Chrouda, A., Mostafa, A., Abo Shama, N. M., Elhady, S. S., Abulkhair, H. S., Khodir, A. E., Elmaaty, A. A., & Al-Karmalawy, A. A. (2021). β-Blockers bearing hydroxyethylamine and hydroxyethylene as potential SARS-CoV-2 Mpro inhibitors: rational based design, in silico, in vitro, and SAR studies for lead optimization. RSC Advances, 11(56), 35536–35558. https://doi.org/10.1039/D1RA04820A
  • Hazem, R. M., Antar, S. A., Nafea, Y. K., Al-Karmalawy, A. A., Saleh, M. A., & El-Azab, M. F. (2021). Pirfenidone and vitamin D mitigate renal fibrosis induced by doxorubicin in mice with Ehrlich solid tumor. Life Sciences, 288, 120185. https://doi.org/10.1016/j.lfs.2021.120185
  • Ibrahim, M. J. A.-A. (2012). Design, synthesis, molecular docking and biological evaluation of some novel quinazoline-4 (3H)-one derivatives as anti-inflammatory agents. Al-Azhar Journal of Pharmaceutical Sciences46(2), 185–203. https://doi.org/10.21608/ajps.2012.7145
  • Ibrahim, M.-K., El-Adl, K., & Al-Karmalawy, A. A. J. B. o. F. o. P., Cairo University (2015). Design, synthesis, molecular docking and anticonvulsant evaluation of novel 6-iodo-2-phenyl-3-substituted-quinazolin-4 (3H)-ones. Bulletin of Faculty of Pharmacy, Cairo University, 53(2), 101–116. https://doi.org/10.1016/j.bfopcu.2015.05.001
  • Jauch, R., Cho, M.-K., Jäkel, S., Netter, C., Schreiter, K., Aicher, B., Zweckstetter, M., Jäckle, H., & Wahl, M. C. (2006). Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment. The EMBO Journal, 25(17), 4020–4032. https://doi.org/10.1038/sj.emboj.7601285
  • Jawaria, R., Khan, M. U., Hussain, M., Muhammad, S., Sagir, M., Hussain, A., & Al-Sehemi, A. G. (2022). Synthesis and characterization of ferrocene-based thiosemicarbazones along with their computational studies for potential as inhibitors for SARS-CoV-2. Journal of the Iranian Chemical Society, 19(3), 839–846. https://doi.org/10.1007/s13738-021-02346-1
  • Kandeil, A., Mostafa, A., Kutkat, O., Moatasim, Y., Al-Karmalawy, A. A., Rashad, A. A., Kayed, A. E., Kayed, A. E., El-Shesheny, R., Kayali, G., & Ali, M. A. (2021). Bioactive polyphenolic compounds showing strong antiviral activities against severe acute respiratory syndrome coronavirus 2. Pathogens, 10(6), 758. https://doi.org/10.3390/pathogens10060758
  • Kealy, T. J., & Pauson, P. L. (1951). A new type of organo-iron compound. Nature, 168(4285), 1039–1040. https://doi.org/10.1038/1681039b0
  • Khalifa, M. M., Al-Karmalawy, A. A., Elkaeed, E. B., Nafie, M. S., Tantawy, M. A., Eissa, I. H., & Mahdy, H. A. (2022). Topo II inhibition and DNA intercalation by new phthalazine-based derivatives as potent anticancer agents: design, synthesis, anti-proliferative, docking, and in vivo studies. Journal of Enzyme Inhibition & Medicinal Chemistry, 37(1), 299–314. https://doi.org/10.1080/14756366.2021.2007905
  • Khattab, M. (2020). Theoretical study of the geometric and electronic characterization of carbendazim-based drug (Nocodazole). Heliyon, 6(6), e04055. https://doi.org/10.1016/j.heliyon.2020.e04055
  • Khattab, M., & Al-Karmalawy, A. A. (2021a). Computational repurposing of benzimidazole anthelmintic drugs as potential colchicine binding site inhibitors. Future Medicinal Chemistry, 13(19), 1623–1638. https://doi.org/10.4155/fmc-2020-0273
  • Khattab, M., & Al‐Karmalawy, A. A. (2021b). Revisiting activity of some nocodazole analogues as a potential anticancer drugs using molecular docking and DFT calculations. Frontiers in Chemistry, 9, 92. https://doi.org/10.3389/fchem.2021.628398
  • Khattab, M., Chatterjee, S., Clayton, A. H. A., & Wang, F. (2016). Two conformers of a tyrosine kinase inhibitor (AG-1478) disclosed using simulated UV–vis absorption spectroscopy. New Journal of Chemistry, 40(10), 8296–8304. https://doi.org/10.1039/C6NJ01909A
  • Kobayashi, K., Matsumoto, K., & Konishi, H. (2011). An efficient synthesis of 3-substituted 3H-isobenzo-furan-1-ylidenamines by the reaction of 2-cyano-benzaldehydes with organolithiums and their conversion into isobenzofuran-1 (3H)-ones. Heterocycles, 83(1), 99. https://doi.org/10.3987/COM-10-12071
  • Lai, A., Clifton, J., Diaconescu, P. L., & Fey, N. (2019). Computational mapping of redox-switchable metal complexes based on ferrocene derivatives. Chemical Communications (Cambridge, England), 55(49), 7021–7024. https://doi.org/10.1039/C9CC01977D
  • Larik, F. A., Saeed, A., Fattah, T. A., Muqadar, U., & Channar, P. A. (2017). Recent advances in the synthesis, biological activities and various applications of ferrocene derivatives. Applied Organometallic Chemistry, 31(8), e3664. https://doi.org/10.1002/aoc.3664
  • Liu, Z.-Q. (2011). Potential applications of ferrocene as a structural feature in antioxidants. Mini Reviews in Medicinal Chemistry, 11(4), 345–358. https://doi.org/10.2174/138955711795305326
  • Liu, C.-G., Gao, M.-L., & Wu, Z.-J. (2014). Computational study on redox-switchable second-order nonlinear optical properties of ferrocene-tetrathiafulvalene hybrid. RSC Advances, 4(72), 38300–38309. https://doi.org/10.1039/C4RA04548C
  • Ludwig, B. S., Correia, J. D., & Kühn, F. E. (2019). Ferrocene derivatives as anti-infective agents. Coordination Chemistry Reviews, 396, 22–48. https://doi.org/10.1016/j.ccr.2019.06.004
  • Ma, C., Taghour, M. S., Belal, A., Mehany, A. B. M., Mostafa, N., Nabeeh, A., Eissa, I. H., & Al-Karmalawy, A. A. (2021). Design and synthesis of new quinoxaline derivatives as potential histone deacetylase inhibitors targeting hepatocellular carcinoma: In silico, in vitro, and SAR studies. Frontiers in Chemistry, 9, 725135–725135. https://doi.org/10.3389/fchem.2021.725135
  • Mahmoud, D. B., Bakr, M. M., Al-Karmalawy, A. A., Moatasim, Y., El Taweel, A., & Mostafa, A. (2021c). Scrutinizing the feasibility of nonionic surfactants to form isotropic bicelles of curcumin: A potential antiviral candidate against COVID-19. AAPS Pharmaceutical Science & Technology, 23(1), 44. https://doi.org/10.1208/s12249-021-02197-2
  • Mahmoud, D. B., Ismail, W. M., Moatasim, Y., Kutkat, O., ElMeshad, A. N., Ezzat, S. M., El Deeb, K. S., El-Fishawy, A. M., Gomaa, M. R., Kandeil, A., Al-Karmalawy, A. A., Ali, M. A., & Mostafa, A. (2021d). Delineating a potent antiviral activity of Cuphea ignea extract loaded nano-formulation against SARS-CoV-2: In silico and in vitro studies. Journal of Drug Delivery Science & Technology, 66, 102845. https://doi.org/10.1016/j.jddst.2021.102845
  • Mahmoud, A., Kotb, E., Alqosaibi, A. I., Al-Karmalawy, A. A., Al-Dhuayan, I. S., & Alabkari, H. (2021a). In vitro and in silico characterization of alkaline serine protease from Bacillus subtilis D9 recovered from Saudi Arabia. Heliyon, 7(10), e08148. https://doi.org/10.1016/j.heliyon.2021.e08148
  • Mahmoud, A., Mostafa, A., Al-Karmalawy, A. A., Zidan, A., Abulkhair, H. S., Mahmoud, S. H., Shehata, M., Elhefnawi, M. M., & Ali, M. A. (2021b). Telaprevir is a potential drug for repurposing against SARS-CoV-2: Computational and in vitro studies. Heliyon, 7(9), e07962. https://doi.org/10.1016/j.heliyon.2021.e07962
  • Munikrishnappa, C. S., Suresh Kumar, G. V., Bhandare, R. R., Konidala, S. K., Sigalapalli, D. K., Vaishnav, Y., & Shaik, A. B. (2022). Multistep synthesis and screening of heterocyclic tetrads containing furan, pyrazoline, thiazole and triazole (or oxadiazole) as antimicrobial and anticancer agents. Journal of Saudi Chemical Society, 26, 101447. https://doi.org/10.1016/j.jscs.2022.101447
  • Navale, D. N., Zote, S. W., & Ramana, M. M. V. (2013). Synthesis of ferrocene derivatives exhibiting low-temperature mesomorphism. Liquid Crystals, 40(10), 1333–1338. https://doi.org/10.1080/02678292.2013.814811
  • Ochiai, K., & Fujii, S. (2021). Structure–property and structure–activity relationships of phenylferrocene derivatives as androgen receptor antagonists. Bioorganic & Medicinal Chemistry Letters, 46, 128141. https://doi.org/10.1016/j.bmcl.2021.128141
  • Ornelas, C. (2011). Application of ferrocene and its derivatives in cancer research. New Journal of Chemistry, 35(10), 1973–1985. https://doi.org/10.1039/c1nj20172g
  • Oyarzabal, J., Zarich, N., Albarran, M. I., Palacios, I., Urbano-Cuadrado, M., Mateos, G., Reymundo, I., Rabal, O., Salgado, A., Corrionero, A., Fominaya, J., Pastor, J., & Bischoff, J. R. (2010). Discovery of mitogen-activated protein kinase-interacting kinase 1 inhibitors by a comprehensive fragment-oriented virtual screening approach. Journal of Medicinal Chemistry, 53(18), 6618–6628. https://doi.org/10.1021/jm1005513
  • Patra, M., Ingram, K., Pierroz, V., Ferrari, S., Spingler, B., Keiser, J., & Gasser, G. (2012). Ferrocenyl derivatives of the anthelmintic praziquantel: design, synthesis, and biological evaluation. Journal of Medicinal Chemistry, 55(20), 8790–8798. https://doi.org/10.1021/jm301077m
  • Pauson, P. L. (1954). Ferrocene derivatives. Part I. The direct synthesis of substituted ferrocenes. Journal of the American Chemical Society, 76(8), 2187–2191. https://doi.org/10.1021/ja01637a046
  • Pi, C., Cui, X., Liu, X., Guo, M., Zhang, H., & Wu, Y. (2014). Synthesis of ferrocene derivatives with planar chirality via palladium-catalyzed enantioselective C–H bond activation. Organic Letters, 16(19), 5164–5167. https://doi.org/10.1021/ol502509f
  • Poole, R. M., & Prossler, J. E. (2014). Tofogliflozin: First global approval. Drugs, 74(8), 939–944. https://doi.org/10.1007/s40265-014-0229-1
  • Raslan, M. A., F. Taher, R., Al-Karmalawy, A. A., El-Ebeedy, D., Metwaly, A. G., Elkateeb, N. M., Ghanem, A., Elghaish, R. A., & Abd El Maksoud, A. I. (2021). Cordyline fruticosa (L.) A. Chev. leaves: isolation, HPLC/MS profiling and evaluation of nephroprotective and hepatoprotective activities supported by molecular docking. New Journal of Chemistry, 45(47), 22216–22233. https://doi.org/10.1039/D1NJ02663A
  • Roux, C., & Biot, C. (2012). Ferrocene-based antimalarials. Future Medicinal Chemistry 4(6), 783–797. https://doi.org/10.4155/fmc.12.26
  • Salami, N., & Shokri, A. (2021). Chapter 5: Electronic structure of solids and molecules. In M. Ghaedi (Ed.), Interface science and technology (Vol. 32, pp. 325–373). Elsevier.
  • Samra, R. M., Soliman, A. F., Zaki, A. A., Ashour, A., Al-Karmalawy, A. A., Hassan, M. A., & Zaghloul, A. M. (2021). Bioassay-guided isolation of a new cytotoxic ceramide from Cyperus rotundus L. South African Journal of Botany, 139, 210–216. https://doi.org/10.1016/j.sajb.2021.02.007
  • Sansook, S., Tuo, W., Lemaire, L., Tourteau, A., Barczyk, A., Dezitter, X., Klupsch, F., Leleu-Chavain, N., Tizzard, G. J., Coles, S. J., Millet, R., & Spencer, J. (2016). Synthesis of bioorganometallic nanomolar-potent CB2 agonists containing a ferrocene unit. Organometallics, 35(19), 3361–3368. https://doi.org/10.1021/acs.organomet.6b00575
  • Shehata, M. M., Mahmoud, S. H., Tarek, M., Al-Karmalawy, A. A., Mahmoud, A., Mostafa, A., M. Elhefnawi, M., & Ali, M. A. (2021). In silico and in vivo evaluation of SARS-CoV-2 predicted epitopes-based candidate vaccine. Molecules 26(20), 6182. https://doi.org/10.3390/molecules26206182
  • Shoala, T., Al-Karmalawy, A. A., Germoush, M. O., ALshamrani, S. M., Abdein, M. A., & Awad, N. S. (2021). Nanobiotechnological approaches to enhance potato resistance against potato leafroll virus (PLRV) using glycyrrhizic acid ammonium salt and salicylic acid nanoparticles. Horticulturae, 7(10), 402. https://doi.org/10.3390/horticulturae7100402
  • Skoupilova, H., Bartosik, M., Sommerova, L., Pinkas, J., Vaculovic, T., Kanicky, V., Karban, J., & Hrstka, R. (2020). Ferrocenes as new anticancer drug candidates: Determination of the mechanism of action. European Journal of Pharmacology, 867, 172825. https://doi.org/10.1016/j.ejphar.2019.172825
  • Soltane, R., Chrouda, A., Mostafa, A., Al-Karmalawy, A. A., Chouaïb, K., dhahri, A., Pashameah, R. A., Alasiri, A., Kutkat, O., Shehata, M., Jannet, H. B., Gharbi, J., & Ali, M. A. (2021). Strong inhibitory activity and action modes of synthetic maslinic acid derivative on highly pathogenic coronaviruses: COVID-19 drug candidate. Pathogens, 10(5), 623. https://doi.org/10.3390/pathogens10050623
  • Soltan, M. A., Elbassiouny, N., Gamal, H., Elkaeed, E. B., Eid, R. A., Eldeen, M. A., & Al-Karmalawy, A. A. (2021). In silico prediction of a multitope vaccine against Moraxella catarrhalis: Reverse vaccinology and immunoinformatics. Vaccines 9(6), 669. https://doi.org/10.3390/vaccines9060669
  • Soltan, M. A., Eldeen, M. A., Elbassiouny, N., Mohamed, I., El-damasy, D. A., Fayad, E., Abu Ali, O. A., Raafat, N., Eid, R. A., & Al-Karmalawy, A. A. (2021). Proteome based approach defines candidates for designing a multitope vaccine against the Nipah virus. International Journal of Molecular Sciences 22(17), 9330. https://doi.org/10.3390/ijms22179330
  • Sonawane, S. C., Kunchur, H. S., Pandey, S. P., & Balakrishna, M. S. (2021). Synthesis, reactivity and transition metal complexes of 1,1′-bis(diethynylphosphino)ferrocene. Journal of Coordination Chemistry, 74(17–20), 2959–2971. https://doi.org/10.1080/00958972.2021.2004310
  • Taher, R. F., Al-Karmalawy, A. A., Abd El Maksoud, A. I., Khalil, H., Hassan, A., El-Khrisy, E.-D A., & El-Kashak, W. (2021). Two new flavonoids and anticancer activity of Hymenosporum flavum: in vitro and molecular docking studies. Journal of Herbmed Pharmacology, 10(4), 443–458. https://doi.org/10.34172/jhp.2021.52
  • Teimuri-Mofrad, R., Abbasi, H., Safa, K. D., & Tahmasebi, B. (2016). Synthesis of novel bis[(tris(dimethylsilyl)methyl)alkyl]ferrocene derivatives as new ferrocenyl multi-functional silyl ether compounds. Arkivoc, 2016(4), 371–384. https://doi.org/10.3998/ark.5550190.p009.596
  • Teixeira, R. R., Bressan, G. C., Pereira, W. L., Ferreira, J. G., De Oliveira, F. M., & Thomaz, D. C. (2013). Synthesis and antiproliferative activity of C-3 functionalized isobenzofuran-1(3H)-ones. Molecules (Basel Switzerland), 18(2), 1881–1896. https://doi.org/10.3390/molecules18021881
  • Věžník, J., Konhefr, M., Fohlerová, Z., & Lacina, K. (2021). Redox-dependent cytotoxicity of ferrocene derivatives and ROS-activated prodrugs based on ferrocenyliminoboronates. Journal of Inorganic Biochemistry, 224, 111561. https://doi.org/10.1016/j.jinorgbio.2021.111561
  • Xia, X., Yu, H., Wang, L., & ul-Abdin, Z. (2016). Recent progress in ferrocene- and azobenzene-based photoelectric responsive materials. RSC Advances 6(107), 105296–105316. https://doi.org/10.1039/C6RA16201K
  • Zaki, A. A., Al Karmalawy, A. A., Khodir, A. E., El-Amier, Y. A., & Ashour, A. (2022a). Isolation of cytotoxic active compounds from Reichardia tingitana with investigation of apoptosis mechanistic induction: In silico, in vitro, and SAR studies. South African Journal of Botany, 144, 115–123. https://doi.org/10.1016/j.sajb.2021.08.006
  • Zaki, A. A., Ashour, A., Elhady, S. S., Darwish, K. M., & Al-Karmalawy, A. A. (2022b). Calendulaglycoside A showing potential activity against SARS-CoV-2 main protease: Molecular docking, molecular dynamics, and SAR studies. Journal of Traditional & Complementary Medicine, 12(1), 16–34. https://doi.org/10.1016/j.jtcme.2021.05.001
  • Zhang, M., Zhao, F., Li, H., Jiang, Y., Yang, Y., Hou, X., Zhang, J., & Li, N. (2022). Effect of novel graphene-based ferrocene nanocomposites on thermal decomposition of AP. Inorganica Chimica Acta, 530, 120672. https://doi.org/10.1016/j.ica.2021.120672

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.