382
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of implicit solvent models in molecular dynamics simulation of α-Synuclein

&
Pages 5230-5245 | Received 24 Mar 2022, Accepted 22 May 2022, Published online: 07 Jun 2022

References

  • Ahmed, M. C., Skaanning, L. K., Jussupow, A., Newcombe, E. A., Kragelund, B. B., Camilloni, C., Langkilde, A. E., & Lindorff-Larsen, K. (2021). Refinement of α-Synuclein ensembles against SAXS data: Comparison of force fields and methods. Frontiers in Molecular Biosciences, 8, 654313–654333. https://doi.org/10.3389/fmolb.2021.654333
  • Al-Shammari, N., Savva, L., Kennedy-Britten, O., & Platts, J. A. (2021). Forcefield evaluation and accelerated molecular dynamics simulation of Zn(II) binding to N-terminus of amyloid-β. Computational Biology and Chemistry, 93, 107540. https://doi.org/10.1016/j.compbiolchem.2021.107540
  • Apetri, M. M., Maiti, N. C., Zagorski, M. G., Carey, P. R., & Anderson, V. E. (2006). Secondary structure of a -synuclein oligomers : Characterization by Raman and atomic force microscopy. Journal of Molecular Biology, 355(1), 63–71. https://doi.org/10.1016/j.jmb.2005.10.071
  • Bellaiche, M. M. J., & Best, R. B. (2018). Molecular determinants of Aβ42 adsorption to amyloid fibril surfaces. The Journal of Physical Chemistry Letters, 9(22), 6437–6443. https://doi.org/10.1021/acs.jpclett.8b02375
  • Bermel, W., Bertini, I., Felli, I. C., Lee, Y. M., Luchinat, C., & Pierattelli, R. (2006). Protonless NMR experiments for sequence-specific assignment of backbone nuclei in unfolded proteins. Journal of the American Chemical Society, 128(12), 3918–3919. https://doi.org/10.1021/ja0582206
  • Best, R. B., Zheng, W., & Mittal, J. (2014). Balanced protein-water interactions improve properties of disordered proteins and non-specific protein association. Journal of Chemical Theory and Computation, 10(11), 5113–5124. https://doi.org/10.1021/ct500569b
  • Bhattacharya, S., Xu, L., & Thompson, D. (2019). Molecular simulations reveal terminal group mediated stabilization of helical conformers in both amyloid-β42 and α-Synuclein. ACS Chemical Neuroscience, 10(6), 2830–2842. https://doi.org/10.1021/acschemneuro.9b00053
  • Bhattacharya, S., Xu, L., & Thompson, D. (2020). Long-range regulation of partially folded amyloidogenic peptides. Scientific Reports, 10, 1–17.
  • Bisaglia, M., Tessari, I., Mammi, S., & Bubacco, L. (2009). Interaction between alpha-synuclein and metal ions, still looking for a role in the pathogenesis of Parkinson's disease . Neuromolecular Medicine, 11(4), 239–251. https://doi.org/10.1007/s12017-009-8082-1
  • Burré, J., Vivona, S., Diao, J., Sharma, M., Brunger, A. T., & Südhof, T. C. (2013). Properties of native brain α-synuclein. Nature, 498(7453), E4–110. https://doi.org/10.1038/nature12125
  • Cai, Y., Lendel, C., Österlund, L., Kasrayan, A., Lannfelt, L., Ingelsson, M., Nikolajeff, F., Karlsson, M., & Bergström, J. (2015). Changes in secondary structure of α-synuclein during oligomerization induced by reactive aldehydes. Biochemical and Biophysical Research Communications, 464(1), 336–341. https://doi.org/10.1016/j.bbrc.2015.06.154
  • Case, D. A., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, I. T., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghoreishi, D., Giambasu, G., Giese, T., Gilson, M. K., Gohlke, H., Goetz, A. W., Greene, D., Harris, R., Homeyer, N., Huang, Y., Izadi, S., … Kollman, P. A. (2019). AMBER 2019.
  • Case, D. A., Betz, R. M., Cerutti, D. S., Cheatham, T. E., Darden, T. A., Duke, R. E., Giese, T. J., Gohlke, H., Goetz, A. W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T. S., LeGrand, S., Li, P., Lin, C., Luchko, T., … Kollman, P. A. (2016). AMBER 2016.,
  • Chan-Yao-Chong, M., Durand, D., & Ha-Duong, T. (2019). Molecular dynamics simulations combined with nuclear magnetic resonance and/or small-angle x-ray scattering data for characterizing intrinsically disordered protein conformational ensembles. Journal of Chemical Information and Modeling, 59(5), 1743–1758. https://doi.org/10.1021/acs.jcim.8b00928
  • Choi, T. S., Lee, J., Han, J. Y., Jung, B. C., Wongkongkathep, P., Loo, J. A., Lee, M. J., & Kim, H. I. (2018). Supramolecular modulation of structural polymorphism in pathogenic α-synuclein fibrils using copper(II) coordination, angew. Angewandte Chemie International Edition, 57(12), 3099–3103. https://doi.org/10.1002/anie.201712286
  • Chwastyk, M., & Cieplak, M. (2020). Conformational biases of α-synuclein and formation of transient knots. The Journal of Physical Chemistry. B, 124(1), 11–19. https://doi.org/10.1021/acs.jpcb.9b08481
  • Coskuner, O., & Wise-Scira, O. (2013). Structures and free energy landscapes of the A53T mutant-type α-synuclein protein and impact of A53T mutation on the structures of the wild-type α-synuclein protein with dynamics. ACS Chemical Neuroscience, 4(7), 1101–1113. https://doi.org/10.1021/cn400041j
  • Coskuner-Weber, O., & Uversky, V. (2018). Insights into the molecular mechanisms of alzheimer’s and Parkinson’s diseases with molecular simulations: Understanding the roles of artificial and pathological missense mutations in intrinsically disordered proteins related to pathology. International Journal of Molecular Sciences, 19(2), 336. https://doi.org/10.3390/ijms19020336
  • Deeth, R. J., Fey, N., & Williams-Hubbard, B. (2005). DommiMOE: An implementation of ligand field molecular mechanics in the molecular operating environment. Journal of Computational Chemistry, 26(2), 123–130. https://doi.org/10.1002/jcc.20137
  • Dick, T. J., & Madura, J. D. (2005). Chapter 5 a review of the TIP4P, TIP4P-Ew, TIP5P, and TIP5P-E water models. Annu. Rep. Comput. Chem, 1, 59–74.
  • Duan, Y., Wu, C., Chowdhury, S., Lee, M. C., Xiong, G., Zhang, W., Yang, R., Cieplak, P., Luo, R., Lee, T., Caldwell, J., Wang, J., & Kollman, P. (2003). A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. Journal of Computational Chemistry, 24(16), 1999–2012. https://doi.org/10.1002/jcc.10349
  • Duong, V. T., Chen, Z., Thapa, M. T., & Luo, R. (2018). Computational studies of intrinsically disordered proteins. The Journal of Physical Chemistry. B, 122(46), 10455–10469. https://doi.org/10.1021/acs.jpcb.8b09029
  • Eliezer, D., Kutluay, E., Bussell, R., & Browne, G. (2001). Conformational properties of alpha-synuclein in its free and lipid-associated states . Journal of Molecular Biology, 307(4), 1061–1073. https://doi.org/10.1006/jmbi.2001.4538
  • Gallego-Villar, L., Pérez-Cerdá, C., Pérez, B., Abia, D., Ugarte, M., Richard, E., & Desviat, L. R. (2013). Functional characterization of novel genotypes and cellular oxidative stress studies in propionic acidemia. Journal of Inherited Metabolic Disease, 36(5), 731–740. https://doi.org/10.1007/s10545-012-9545-3
  • Hawkins, G. D., Cramer, C. J., & Truhlar, D. G. (1995). Pairwise solute descreening of solute charges from a dielectric medium. Chemical Physics Letters, 246(1-2), 122–129. https://doi.org/10.1016/0009-2614(95)01082-K
  • Hawkins, G. D., Cramer, C. J., & Truhlar, D. G. (1996). Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium. The Journal of Physical Chemistry, 100(51), 19824–19839. https://doi.org/10.1021/jp961710n
  • Hoffmann, K. Q., McGovern, M., Chiu, C. C., & De Pablo, J. J. (2015). Secondary structure of rat and human amylin across force fields. Plos One, 10(7), e0134091–24. https://doi.org/10.1371/journal.pone.0134091
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. The Journal of Chemical Physics, 114(5), 2090–2098. https://doi.org/10.1063/1.1332996
  • Kim, D. H., Lee, J., Mok, K. H., Lee, J. H., & Han, K. H. (2020). Salient features of monomeric alpha-synuclein revealed by NMR spectroscopy. Biomolecules, 10(3), 428–415. https://doi.org/10.3390/biom10030428
  • Kräutler, V., & Gunsteren, W. F. V. A. N. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular. 22, 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5%3C501::AID-JCC1021%3E3.0.CO;2-V
  • Lei, H., Wu, C., Wang, Z.-X., Zhou, Y., & Duan, Y. (2008). Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations. The Journal of Chemical Physics, 128(23), 235105. https://doi.org/10.1063/1.2937135
  • Li, H. T., Du, H. N., Tang, L., Hu, J., & Hu, H. Y. (2002). Structural transformation and aggregation of human alpha-synuclein in trifluoroethanol: non-amyloid component sequence is essential and beta-sheet formation is prerequisite to aggregation. Biopolymers, 64(4), 221–226. https://doi.org/10.1002/bip.10179
  • Lin, X.-J., Zhang, F., Xie, Y.-Y., Bao, W.-J., He, J.-H., & Hu, H.-Y. (2006). Secondary structural formation of alpha-synuclein amyloids as revealed by g-factor of solid-state circular dichroism . Biopolymers, 83(3), 226–232. https://doi.org/10.1002/bip.20550
  • Mahul-Mellier, A. L., Burtscher, J., Maharjan, N., Weerens, L., Croisier, M., Kuttler, F., Leleu, M., Knott, G. W., & Lashuel, H. A. (2020). The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 117(9), 4971–4982. https://doi.org/10.1073/pnas.1913904117
  • Maiti, N. C., Apetri, M. M., Zagorski, M. G., Carey, P. R., & Anderson, V. E. (2004). Raman spectroscopic characterization of secondary structure in natively unfolded proteins: Alpha-synuclein. Journal of the American Chemical Society, 126(8), 2399–2408. https://doi.org/10.1021/ja0356176
  • Mandaci, S. Y., Caliskan, M., Sariaslan, M. F., Uversky, V. N., & Coskuner-Weber, O. (2020). Epitope region identification challenges of intrinsically disordered proteins in neurodegenerative diseases: Secondary structure dependence of α-synuclein on simulation techniques and force field parameters. Chemical Biology & Drug Design, 96(1), 659–667. https://doi.org/10.1111/cbdd.13662
  • Marsh, J. A., Singh, V. K., Jia, Z., & Forman-Kay, J. D. (2006). Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Science: A Publication of the Protein Society, 15(12), 2795–2804. https://doi.org/10.1110/ps.062465306
  • Meade, R. M., Fairlie, D. P., & Mason, J. M. (2019). Alpha-synuclein structure and Parkinson’s disease. Molecular Neurodegeneration, 14, 1–14.
  • Miao, Y., Sinko, W., Pierce, L., Bucher, D., Walker, R. C., & McCammon, J. A. (2014). Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. Journal of Chemical Theory and Computation, 10(7), 2677–2689. https://doi.org/10.1021/ct500090q
  • Mor, D. E., Ugras, S. E., Daniels, M. J., & Ischiropoulos, H. (2016). Dynamic structural flexibility of α-synuclein. Neurobiology of Disease, 88, 66–74. https://doi.org/10.1016/j.nbd.2015.12.018
  • Oldfield, C. J., & Dunker, A. K. (2014). Intrinsically disordered proteins and intrinsically disordered protein regions. Annual Review of Biochemistry, 83, 553–584. https://doi.org/10.1146/annurev-biochem-072711-164947
  • Onufriev, A., Bashford, D., & Case, D. A. (2000). Modification of the generalized born model suitable for macromolecules. The Journal of Physical Chemistry B, 104(15), 3712–3720. https://doi.org/10.1021/jp994072s
  • Patel, S., Ramanujam, V., Srivastava, A. K., & Chary, K. V. R. (2014). Conformational propensities and dynamics of a βγ-crystallin, an intrinsically disordered protein. Physical Chemistry Chemical Physics : PCCP, 16(25), 12703–12718. https://doi.org/10.1039/c3cp53558d
  • Ramis, R., Ortega-Castro, J., Casasnovas, R., Marino, L., Vilanova, B., Adrover, M., & Frau, J. (2019). A coarse-grained molecular dynamics approach to the study of the intrinsically disordered protein α-Synuclein. Journal of Chemical Information and Modeling, 59(4), 1458–1471. https://doi.org/10.1021/acs.jcim.8b00921
  • Ramis, R., Ortega-Castro, J., Vilanova, B., Adrover, M., & Frau, J. (2021). Cu2+, Ca2+, and methionine oxidation expose the hydrophobic α-synuclein NAC domain. International Journal of Biological Macromolecules, 169, 251–263. https://doi.org/10.1016/j.ijbiomac.2020.12.018
  • Rauscher, S., Gapsys, V., Gajda, M. J., Zweckstetter, M., de Groot, B. L., & Grubmüller, H. (2015). Structural ensembles of intrinsically disordered proteins depend strongly on force field: A comparison to experiment. Journal of Chemical Theory and Computation, 11(11), 5513–5524. https://doi.org/10.1021/acs.jctc.5b00736
  • Reid, L. M., Guzzetti, I., Svensson, T., Carlsson, A.-C., Su, W., Leek, T., von Sydow, L., Czechtizky, W., Miljak, M., Verma, C., De Maria, L., & Essex, J. W. (2022). How well does molecular simulation reproduce environment-specific conformations of the intrinsically disordered peptides PLP, TP2 and ONEG? Chemical Science, 13(7), 1957–1971. https://doi.org/10.1039/d1sc03496k
  • Rekas, A., Knott, R. B., Sokolova, A., Barnham, K. J., Perez, K. A., Masters, C. L., Drew, S. C., Cappai, R., Curtain, C. C., & Pham, C. L. L. (2010). The structure of dopamine induced alpha-synuclein oligomers. European Biophysics Journal: EBJ, 39(10), 1407–1419. https://doi.org/10.1007/s00249-010-0595-x
  • Robustelli, P., Piana, S., & Shaw, D. E. (2018). Developing a molecular dynamics force field for both folded and disordered protein states. Proceedings of the National Academy of Sciences of the United States of America, 115(21), E4758–E4766.
  • Rodriguez, J. A., Ivanova, M. I., Sawaya, M. R., Cascio, D., Reyes, F. E., Shi, D., Sangwan, S., Guenther, E. L., Johnson, L. M., Zhang, M., Jiang, L., Arbing, M. A., Nannenga, B. L., Hattne, J., Whitelegge, J., Brewster, A. S., Messerschmidt, M., Boutet, S., Sauter, N. K., Gonen, T., & Eisenberg, D. S. (2015). Structure of the toxic core of α-synuclein from invisible crystals. Nature, 525(7570), 486–490. https://doi.org/10.1038/nature15368
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Rose, F., Hodak, M., & Bernholc, J. (2011). Mechanism of copper(II)-induced misfolding of Parkinson’s disease protein. Scientific Reports, 1, 11–15.
  • Rungnim, C., Rungrotmongkol, T., Hannongbua, S., & Okumura, H. (2013). Replica exchange molecular dynamics simulation of chitosan for drug delivery system based on carbon nanotube. Journal of Molecular Graphics & Modelling, 39, 183–192. https://doi.org/10.1016/j.jmgm.2012.11.004
  • Sanjeev, A., & Kumar Mattaparthi, V. (2017). Computational investigation on tyrosine to alanine mutations delaying the early stage of α-synuclein aggregation. Current Proteomics, 14(1), 31–41. https://doi.org/10.2174/1570164614666161206143325
  • Shell, M. S., Ritterson, R., & Dill, K. A. (2008). A test on peptide stability of AMBER force fields with implicit solvation. The Journal of Physical Chemistry. B, 112(22), 6878–6886. https://doi.org/10.1021/jp800282x
  • Shen, Y., & Bax, A. (2010). SPARTA+: A modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. Journal of Biomolecular NMR, 48(1), 13–22. https://doi.org/10.1007/s10858-010-9433-9
  • Shrestha, U. R., Juneja, P., Zhang, Q., Gurumoorthy, V., Borreguero, J. M., Urban, V., Cheng, X., Pingali, S. V., Smith, J. C., O'Neill, H. M., & Petridis, L. (2019). Generation of the configurational ensemble of an intrinsically disordered protein from unbiased molecular dynamics simulation. Proceedings of the National Academy of Sciences of the United States of America, 116(41), 20446–20452. https://doi.org/10.1073/pnas.1907251116
  • Shrestha, U. R., Smith, J. C., & Petridis, L. (2021). Full structural ensembles of intrinsically disordered proteins from unbiased molecular dynamics simulations. Communications Biology, 4, 1–8.
  • Silva, B. A., Einarsdóttir, Ó., Fink, A. L., & Uversky, V. N. (2013). Biophysical characterization of α-synuclein and rotenone interaction. Biomolecules, 3(3), 703–732. https://doi.org/10.3390/biom3030703
  • Somavarapu, A. K., & Kepp, K. P. (2015). The dependence of amyloid-β dynamics on protein force fields and water models. Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry, 16(15), 3278–3289. https://doi.org/10.1002/cphc.201500415
  • Song, D., Luo, R., & Chen, H.-F. (2017). The IDP-specific force field ff14IDPSFF improves the conformer sampling of intrinsically disordered proteins. Journal of Chemical Information and Modeling, 57(5), 1166–1178. https://doi.org/10.1021/acs.jcim.7b00135
  • Tuttle, M. D., Comellas, G., Nieuwkoop, A. J., Covell, D. J., Berthold, D. A., Kloepper, K. D., Courtney, J. M., Kim, J. K., Barclay, A. M., Kendall, A., Wan, W., Stubbs, G., Schwieters, C. D., Lee, V. M. Y., George, J. M., & Rienstra, C. M. (2016). Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nature Structural & Molecular Biology, 23(5), 409–415. https://doi.org/10.1038/nsmb.3194
  • Ueda, K., Fukushima, H., Masliah, E., Xia, Y. U., Iwai, A., Yoshimoto, M., Otero, D. A. C., Kondo, J., Ihara, Y., & Saitoh, T. (1993). Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90(23), 11282–11286. https://doi.org/10.1073/pnas.90.23.11282
  • Ulmer, T. S., Bax, A., Cole, N. B., & Nussbaum, R. L. (2005). Structure and dynamics of micelle-bound human alpha-synuclein. The Journal of Biological Chemistry, 280(10), 9595–9603. https://doi.org/10.1074/jbc.M411805200
  • Ulrih, N. P., Barry, C. H., & Fink, A. L. (2008). Impact of Tyr to Ala mutations on alpha-synuclein fibrillation and structural properties . Biochimica et biophysica acta, 1782(10), 581–585. https://doi.org/10.1016/j.bbadis.2008.07.004
  • Uversky, V. N. (2013). Unusual biophysics of intrinsically disordered proteins. Biochimica et biophysica acta, 1834(5), 932–951. https://doi.org/10.1016/j.bbapap.2012.12.008
  • Uversky, V. N., Cooper, E. M., Bower, K. S., Li, J., & Fink, A. L. (2002). Accelerated α-synuclein fibrillation in crowded milieu. FEBS Letters, 515(1-3), 99–103. https://doi.org/10.1016/S0014-5793(02)02446-8
  • Uversky, V. N., Li, J., & Fink, A. L. (2001). Evidence for a Partially folded Intermediate in alpha-synuclein fibril formation . The Journal of Biological Chemistry, 276(14), 10737–10744. https://doi.org/10.1074/jbc.M010907200
  • Voelz, V. A., Dill, K. A., & Chorny, I. (2011). Peptoid conformational free energy landscapes from implicit-solvent molecular simulations in AMBER. Biopolymers, 96(5), 639–650. https://doi.org/10.1002/bip.21575
  • Weber, O. C., & Uversky, V. N. (2017). How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β42 in water . Intrinsically Disordered Proteins, 5(1), e1377813. https://doi.org/10.1080/21690707.2017.1377813
  • Xu, L., Nussinov, R., & Ma, B. (2016). Coupling of the non-amyloid-component (NAC) domain and the KTK(E/Q)GV repeats stabilize the α-synuclein fibrils. European Journal of Medicinal Chemistry, 121, 841–850. https://doi.org/10.1016/j.ejmech.2016.01.044
  • Zheng, W., Borgia, A., Buholzer, K., Grishaev, A., Schuler, B., & Best, R. B. (2016). Probing the action of chemical denaturant on an intrinsically disordered protein by simulation and experiment. Journal of the American Chemical Society, 138(36), 11702–11713. https://doi.org/10.1021/jacs.6b05443
  • Zhou, R., & Berne, B. J. (2002). Can a continuum solvent model reproduce the free energy landscape of a beta -hairpin folding in water? Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12777–12782. https://doi.org/10.1073/pnas.142430099

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.