188
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Synthetic approach toward spiro quinoxaline-β-lactam based heterocyclic compounds: Spectral characterization, SAR, pharmacokinetic and biomolecular interaction studies

, , & ORCID Icon
Pages 5382-5398 | Received 04 Feb 2022, Accepted 31 May 2022, Published online: 14 Jun 2022

References

  • Abbas, A., Murtaza, S., Tahir, M. N., Shamim, S., Sirajuddin, M., Rana, U. A., Naseem, K., & Rafique, H. (2016). Synthesis, antioxidant, enzyme inhibition and DNA binding studies of novel N-benzylated derivatives of sulfonamide. Journal of Molecular Structure, 1117, 269–275. https://doi.org/10.1016/j.molstruc.2016.03.066
  • Abbass, E. M., Khalil, A. K., Mohamed, M. M., Eissa, I. H., & El-Naggar, A. M. (2020). Design, efficient synthesis, docking studies, and anticancer evaluation of new quinoxalines as potential intercalative Topo II inhibitors and apoptosis inducers. Bioorganic Chemistry, 104, 104255. https://doi.org/10.1016/j.bioorg.2020.104255
  • Abdellattif, M. H., Shahbaaz, M., Arief, M. M. H., & Hussien, M. A. (2021). Oxazinethione derivatives as a precursor to pyrazolone and pyrimidine derivatives: Synthesis, biological activities, molecular modeling, adme, and molecular dynamics studies. Molecules, 26(18), 5482. https://doi.org/10.3390/molecules26185482
  • Achelle, S., Baudequin, C., & Plé, N. (2013). Luminescent materials incorporating pyrazine or quinoxaline moieties. Dyes and Pigments, 98(3), 575–600. https://doi.org/10.1016/j.dyepig.2013.03.030
  • Alley, M. C., Scudiero, D. A., Monks, A., Hursey, M., Czerwinski, M. J., Fine, D. L., Abbott, B. J., Mayo, J. G., Shoemaker, R., & Boyd, M. R. (1988). Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Research, 48(3), 584–588.
  • Allouche, A. (2011). Software news and updates Gabedit — A graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1), 174–182. https://doi.org/10.1002/jcc.21600
  • Alsaedi, S., Babgi, B. A., Abdellattif, M. H., Arshad, M. N., Emwas, A. H. M., Jaremko, M., Humphrey, M. G., Asiri, A. M., & Hussien, M. A. (2021). DNA-binding and cytotoxicity of copper(I) complexes containing functionalized dipyridylphenazine ligands. Pharmaceutics, 13(5), 764. https://doi.org/10.3390/pharmaceutics13050764
  • Alshaer, W., Zraikat, M., Amer, A., Nsairat, H., Lafi, Z., Alqudah, D. A., Al Qadi, E., Alsheleh, T., Odeh, F., Alkaraki, A., Zihlif, M., Bustanji, Y., Fattal, E., & Awidi, A. (2019). Encapsulation of echinomycin in cyclodextrin inclusion complexes into liposomes: In vitro anti-proliferative and anti-invasive activity in glioblastoma. RSC Advances, 9(53), 30976–30988. https://doi.org/10.1039/c9ra05636j
  • Altaf, M., Casagrande, N., Mariotto, E., Baig, N., Kawde, A. N., Corona, G., Larcher, R., Borghese, C., Pavan, C., Seliman, A. A., Aldinucci, D., & Isab, A. A. (2019). Potent in vitro and in vivo anticancer activity of new bipyridine and bipyrimidine gold (III) dithiocarbamate derivatives. Cancers, 11(4), 474–414. https://doi.org/10.3390/cancers11040474
  • Ammar, Y. A., Farag, A. A., Ali, A. M., Hessein, S. A., Askar, A. A., Fayed, E. A., Elsisi, D. M., & Ragab, A. (2020). Antimicrobial evaluation of thiadiazino and thiazolo quinoxaline hybrids as potential DNA gyrase inhibitors; design, synthesis, characterization and morphological studies. Bioorganic Chemistry, 99, 103841. https://doi.org/10.1016/j.bioorg.2020.103841
  • Bhattacharjee, P., Ghosh, T., Sarkar, S., Pandya, P., & Bhadra, K. (2018). Binding affinity and in vitro cytotoxicity of harmaline targeting different motifs of nucleic acids: An ultimate drug designing approach. Journal of Molecular Recognition, 31(4), e2687. https://doi.org/10.1002/jmr.2687
  • Bhola, Y. O., Socha, B. N., Pandya, S. B., Dubey, R. P., & Patel, M. K. (2019). Molecular structure, DFT studies, Hirshfeld surface analysis, energy frameworks, and molecular docking studies of novel (E)-1-(4-chlorophenyl)-5-methyl-N′-((3-methyl-5-phenoxy-1-phenyl-1H-pyrazol-4-yl) methylene)-1H-1, 2, 3-triazole-4-carbohydrazide. Molecular Crystals and Liquid Crystals, 692(1), 83–93. https://doi.org/10.1080/15421406.2020.1721946
  • Bora, D., Kaushal, A., & Shankaraiah, N. (2021). Anticancer potential of spirocompounds in medicinal chemistry: A pentennial expedition. European Journal of Medicinal Chemistry, 215, 113263. https://doi.org/10.1016/j.ejmech.2021.113263
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717–42713. https://doi.org/10.1038/srep42717
  • El-Helby, A. G. A., Sakr, H., Ayyad, R. R., Mahdy, H. A., Khalifa, M. M., Belal, A., Rashed, M., El-Sharkawy, A., Metwaly, A. M., Elhendawy, M. A., Radwan, M. M., ElSohly, M. A., & Eissa, I. H. (2020). Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors. Bioorganic Chemistry, 103, 104233. https://doi.org/10.1016/j.bioorg.2020.104233
  • Enoch, I. V. M. V., & Yousuf, S. (2013). β-cyclodextrin inclusion complexes of 2-hydroxyfluorene and 2-hydroxy-9-fluorenone: Differences in stoichiometry and excited state prototropic equilibrium. Journal of Solution Chemistry, 42(2), 470–484. https://doi.org/10.1007/s10953-013-9965-1
  • Filatov, V., Kukushkin, M., Kuznetsova, J., Skvortsov, D., Tafeenko, V., Zyk, N., Majouga, A., & Beloglazkina, E. (2020). Synthesis of 1,3-diaryl-spiro[azetidine-2,3'-indoline]-2',4-diones via the Staudinger reaction: cis- or trans-diastereoselectivity with different addition modes. RSC Advances, 10(24), 14122–14133. https://doi.org/10.1039/d0ra02374d
  • Ghosh, T., Sarkar, S., Bhattacharjee, P., Jana, G. C., Hossain, M., Pandya, P., & Bhadra, K. (2020). In vitro relationship between serum protein binding to beta-carboline alkaloids: A comparative cytotoxic, spectroscopic and calorimetric assays. Journal of Biomolecular Structure & Dynamics, 38(4), 1103–1118. https://doi.org/10.1080/07391102.2019.1595727
  • Habib, S. H., & Saha, S. (2010). Burden of non-communicable disease: Global overview. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 4(1), 41–47. https://doi.org/10.1016/j.dsx.2008.04.005
  • Hutchings, M., Truman, A., & Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
  • Islam, M. M., Chakraborty, M., Pandya, P., Al Masum, A., Gupta, N., & Mukhopadhyay, S. (2013). Binding of DNA with rhodamine B: Spectroscopic and molecular modeling studies. Dyes and Pigments, 99(2), 412–422. https://doi.org/10.1016/j.dyepig.2013.05.028
  • Kanchanadevi, S., Fronczek, F. R., Immanuel David, C., Nandhakumar, R., & Mahalingam, V. (2021). Investigation of DNA/BSA binding and cytotoxic properties of new Co(II), Ni(II) and Cu(II) hydrazone complexes. Inorganica Chimica Acta, 526, 120536. https://doi.org/10.1016/j.ica.2021.120536
  • Kanthecha, D. N., Bhatt, B. S., Patel, M. N., Vaidya, F. U., & Pathak, C. (2021). DNA interaction, anticancer, cytotoxicity and genotoxicity studies with potential pyrazine-bipyrazole dinuclear µ-oxo bridged Au(III) complexes. Molecular Diversity. https://doi.org/10.1007/s11030-021-10317-0
  • Karia, P. S., Vekariya, P. A., Patidar, A. P., & Patel, M. N. (2015). Copper(II) complexes with N,O-donor ligands and ofloxacin drug as antibacterial, DNA interacting, cytotoxic and SOD mimic agent. Indian Journal of Microbiology, 55(3), 302–312. https://doi.org/10.1007/s12088-015-0525-9
  • Liu, J. G., Ye, B. H., Li, H., Zhen, Q. X., Ji, L. N., & Fu, Y. H. (1999). Polypyridyl ruthenium(II) complexes containing intramolecular hydrogen-bond ligand: Syntheses, characterization, and DNA-binding properties. Journal of Inorganic Biochemistry, 76(3-4), 265–271. https://doi.org/10.1016/S0162-0134(99)00154-3
  • Maikoo, S., Chakraborty, A., Vukea, N., Dingle, L. M. K., Samson, W. J., de la Mare, J. A., Edkins, A. L., & Booysen, I. N. (2021). Ruthenium complexes with mono- or bis-heterocyclic chelates: DNA/BSA binding, antioxidant and anticancer studies. Journal of Biomolecular Structure & Dynamics, 39(11), 4077–4088. https://doi.org/10.1080/07391102.2020.1775126
  • Maiti, S. K., Kalita, M., Singh, A., Deka, J., & Barman, P. (2020). Investigation of DNA binding and bioactivities of thioether containing Schiff base Copper(II), Cobalt(II) and Palladium(II) complexes: Synthesis, characterization, spectrochemical study, viscosity measurement. Polyhedron, 184, 114559. https://doi.org/10.1016/j.poly.2020.114559
  • Mehta, J. V., Gajera, S. B., Thakor, P., Thakkar, V. R., & Patel, M. N. (2015). Synthesis of 1,3,5-trisubstituted pyrazoline derivatives and their applications. RSC Advances, 5(104), 85350–85362. https://doi.org/10.1039/C5RA17185G
  • Missioui, M., Mortada, S., Guerrab, W., Serdaroğlu, G., Kaya, S., Mague, J. T., Essassi, E. M., Faouzi, M. E. A., & Ramli, Y. (2021). Novel antioxidant quinoxaline derivative: Synthesis, crystal structure, theoretical studies, antidiabetic activity and molecular docking study. Journal of Molecular Structure, 1239, 130484. https://doi.org/10.1016/j.molstruc.2021.130484
  • Mohammad, M., Al Rasid Gazi, H., Pandav, K., Pandya, P., & Islam, M. M. (2021). Evidence for dual site binding of Nile Blue A toward DNA: Spectroscopic, thermodynamic, and molecular modeling studies. ACS Omega, 6(4), 2613–2625. https://doi.org/10.1021/acsomega.0c04775
  • Mohammadlou, F., Mansouri-Torshizi, H., & Abdi, K. (2021). Interaction of bis(alkylamine)dichloropalladium(II) complexes with CT-DNA and BSA; their synthesis, characterization, antitumor, and antibacterial evaluations. Journal of Biomolecular Structure & Dynamics, 39(4), 1354–1372. https://doi.org/10.1080/07391102.2020.1731601
  • Montana, M., Mathias, F., Terme, T., & Vanelle, P. (2019). Antitumoral activity of quinoxaline derivatives: A systematic review. European Journal of Medicinal Chemistry, 163, 136–147. https://doi.org/10.1016/j.ejmech.2018.11.059
  • Murtaza, S., Shamim, S., Kousar, N., Tahir, M. N., Sirajuddin, M., & Rana, U. A. (2016). Synthesis, biological investigation, calf thymus DNA binding and docking studies of the sulfonyl hydrazides and their derivatives. Journal of Molecular Structure, 1107, 99–108. https://doi.org/10.1016/j.molstruc.2015.11.046
  • Omar, A. M., Alswah, M., Ahmed, H. E. A., Bayoumi, A. H., El-Gamal, K. M., El-Morsy, A., Ghiaty, A., Afifi, T. H., Sherbiny, F. F., Mohammed, A. S., & Mansour, B. A. (2020). Antimicrobial screening and pharmacokinetic profiling of novel phenyl-[1,2,4]triazolo[4,3-a]quinoxaline analogues targeting DHFR and E. coli DNA gyrase B. Bioorganic Chemistry, 96, 103656. https://doi.org/10.1016/j.bioorg.2020.103656
  • Patel, N. J., Bhatt, B. S., & Patel, M. N. (2019). Heteroleptic N,N-donor pyrazole based Pt(II) and Pd(II) complexes: DNA binding, molecular docking and cytotoxicity studies. Inorganica Chimica Acta, 498, 119130. https://doi.org/10.1016/j.ica.2019.119130
  • Patel, N. J., Bhatt, B. S., Vekariya, P. A., Vaidya, F. U., Pathak, C., Pandya, J., & Patel, M. N. (2020). Synthesis, characterization, structural-activity relationship and biomolecular interaction studies of heteroleptic Pd(II) complexes with acetyl pyridine scaffold. Journal of Molecular Structure, 1221, 128802. https://doi.org/10.1016/j.molstruc.2020.128802
  • Raza, A., Bano, S., Xu, X., Zhang, R. X., Khalid, H., Iqbal, F. M., Xia, C., Tang, J., & Ouyang, Z. (2017). Rutin-nickel complex: Synthesis, characterization, antioxidant, DNA binding, and DNA cleavage activities. Biological Trace Element Research, 178(1), 160–169. https://doi.org/10.1007/s12011-016-0909-7
  • Sameena, Y., & Enoch, I. V. M. V. (2013). The influence of β-cyclodextrin on the interaction of hesperetin and its bismuth (III) complex with calf thymus DNA. Journal of Luminescence, 138, 105–116. https://doi.org/10.1016/j.jlumin.2012.12.003
  • Seeliger, D., & De Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Serhan, M., Sprowls, M., Jackemeyer, D., Long, M., Perez, I. D., Maret, W., Tao, N., & Forzani, E. (2019). Total iron measurement in human serum with a smartphone. AIChE Annual Meeting, Conference Proceedings, 2019 November. https://doi.org/10.1039/x0xx00000x
  • Sharfalddin, A. A., Emwas, A. H., Jaremko, M., & Hussien, M. A. (2021). Synthesis and theoretical calculations of metal-antibiotic chelation with thiamphenicol: In vitro DNA and HSA binding, molecular docking, and cytotoxicity studies. New Journal of Chemistry, 45(21), 9598–9613. https://doi.org/10.1039/D1NJ00293G
  • Sirajuddin, M., Ali, S., McKee, V., Akhtar, N., Andleeb, S., & Wadood, A. (2019). Spectroscopic characterizations, structural peculiarities, molecular docking study and evaluation of biological potential of newly designed organotin(IV) carboxylates. Journal of Photochemistry and Photobiology. B, Biology, 197, 111516. https://doi.org/10.1016/j.jphotobiol.2019.111516
  • Sirajuddin, M., Ali, S., McKee, V., Wadood, A., & Ghufran, M. (2019). Exploration of organotin(IV) derivatives for medicinal applications: Synthesis, spectroscopic characterization, structural elucidation and molecular docking study. Journal of Molecular Structure, 1181, 93–108. https://doi.org/10.1016/j.molstruc.2018.12.041
  • Sirajuddin, M., McKee, V., Tariq, M., & Ali, S. (2018). Newly designed organotin(IV) carboxylates with peptide linkage: Synthesis, structural elucidation, physicochemical characterizations and pharmacological investigations. European Journal of Medicinal Chemistry, 143, 1903–1918. https://doi.org/10.1016/j.ejmech.2017.11.001
  • Stornetta, A., Zimmermann, M., Cimino, G. D., Henderson, P. T., & Sturla, S. J. (2017). DNA adducts from anticancer drugs as candidate predictive markers for precision medicine. Chemical Research in Toxicology, 30(1), 388–409. https://doi.org/10.1021/acs.chemrestox.6b00380
  • Sukanya, P., & Reddy, C. V. R. (2021). Structural investigation, DNA interactions and in vitro anticancer studies of transition metal complexes of 3-(2-(2, 4-dihydroxy benzylidene) hydrazinyl) quinoxalin-2(1H)-one. Journal of Biomolecular Structure and Dynamics, 0(0), 1–12. https://doi.org/10.1080/07391102.2021.1877819
  • Tariq, S., Somakala, K., & Amir, M. (2018). Quinoxaline: An insight into the recent pharmacological advances. European Journal of Medicinal Chemistry, 143, 542–557. https://doi.org/10.1016/j.ejmech.2017.11.064
  • Thakor, K. P., Lunagariya, M. V., Bhatt, B. S., & Patel, M. N. (2019). Fluorescence and absorption studies of DNA-Pd(II) complex interaction: Synthesis, spectroanalytical investigations and biological activities . Luminescence: The Journal of Biological and Chemical Luminescence, 34(1), 113–124. https://doi.org/10.1002/bio.3587
  • Varma, R. R., Pandya, J. G., Vaidya, F. U., Pathak, C., Dabhi, R. A., Dhaduk, M. P., Bhatt, B. S., & Patel, M. N. (2021). DNA interaction, anticancer, antibacterial, ROS and lipid peroxidation studies of quinoxaline based organometallic Re(I) carbonyls. Journal of Molecular Structure, 1240, 130529. https://doi.org/10.1016/j.molstruc.2021.130529
  • Vekariya, P. A., Karia, P. S., Bhatt, B. S., & Patel, M. N. (2019). Spectroscopic and electrochemical study for evaluating DNA interaction activity of 4-(3-halophenyl)-6-(pyridin-2-yl)pyrimidin-2-amine based piano stool Cp* Rh (III) and Ir (III) complexes. Applied Organometallic Chemistry, 33(10), 1–11. https://doi.org/10.1002/aoc.5152
  • Xu, H., & Fan, L. L. (2011). Synthesis and antifungal activities of novel 5,6-dihydro-indolo[1,2-a]quinoxaline derivatives. European Journal of Medicinal Chemistry, 46(5), 1919–1925. https://doi.org/10.1016/j.ejmech.2011.02.035
  • Yashwantrao, G., & Saha, S. (2021). Recent advances in the synthesis and reactivity of quinoxaline. Organic Chemistry Frontiers, 8(11), 2820–2862. https://doi.org/10.1039/D0QO01575J
  • You, W., & Henneberg, M. (2018). Cancer incidence increasing globally: The role of relaxed natural selection. Evolutionary Applications, 11(2), 140–152. https://doi.org/10.1111/eva.12523
  • Yousuf, S., & Enoch, I. V. M. V. (2013). Binding interactions of naringenin and naringin with calf thymus DNA and the role of β-cyclodextrin in the binding. AAPS PharmSciTech, 14(2), 770–781. https://doi.org/10.1208/s12249-013-9963-z
  • Zhang, D. Y., Nie, Y., Sang, H., Suo, J. J., Li, Z. J., Gu, W., Tian, J. L., Liu, X., & Yan, S. P. (2017). Three structurally related Copper complexes with two isomers: DNA/BSA binding ability, DNA cleavage activity and excellent cytotoxicity. Inorganica Chimica Acta, 457, 7–18. https://doi.org/10.1016/j.ica.2016.12.002
  • Zhang, M., Dai, Z. C., Qian, S. S., Liu, J. Y., Xiao, Y., Lu, A. M., Zhu, H. L., Wang, J. X., & Ye, Y. H. (2014). Design, synthesis, antifungal, and antioxidant activities of (E)-6-((2-Phenylhydrazono)methyl)quinoxaline derivatives. Journal of Agricultural and Food Chemistry, 62(40), 9637–9643. https://doi.org/10.1021/jf504359p

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.