196
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Inhibition of Mycobacterium tuberculosis InhA (Enoyl-acyl carrier protein reductase) by synthetic Chalcones: a molecular modelling analysis and in-vitro evidence

ORCID Icon, ORCID Icon &
Pages 5399-5417 | Received 31 Mar 2022, Accepted 01 Jun 2022, Published online: 24 Jun 2022

References

  • Achkar, J. M., & Jenny-Avital, E. R. (2011). Incipient and subclinical tuberculosis: defining early disease states in the context of host immune response. The Journal of Infectious Diseases, 204(4), S1179–S86. https://doi.org/10.1093/infdis/jir451
  • Adigun, R., & Singh, R. (2022). Tuberculosis. StatPearls Publishing LLC.
  • Al-blewi, F., Rezki, N., Naqvi, A., Qutb Uddin, H., Al-Sodies, S., Messali, M., Aouad, M. R., & Bardaweel, S. (2019). A profile of the in vitro anti-tumor activity and in silico adme predictions of novel benzothiazole amide-functionalized imidazolium ionic liquids. International Journal of Molecular Sciences, 20(12), 2865. https://doi.org/10.3390/ijms20122865
  • Aly, A. A., El-Sheref, E. M., Bakheet, M. E. M., Mourad, M. A. E., Bräse, S., Ibrahim, M. A. A., Nieger, M., Garvalov, B. K., Dalby, K. N., & Kaoud, T. S. (2019). Design, synthesis and biological evaluation of fused naphthofuro[3,2-c] quinoline-6,7,12-triones and pyrano[3,2-c]quinoline-6,7,8,13-tetraones derivatives as ERK inhibitors with efficacy in BRAF-mutant melanoma. Bioorganic Chemistry, 82, 290–305. https://doi.org/10.1016/j.bioorg.2018.10.044
  • Anagani, B., Singh, J., Bassin, J. P., Besra, G. S., Benham, C., Reddy, T. R. K., Cox, J. A. G., & Goyal, M. (2020). Identification and validation of the mode of action of the chalcone anti-mycobacterial compounds. Cell Surface (Amsterdam, Netherlands), 6, 100041. https://doi.org/10.1016/j.tcsw.2020.100041
  • Ayati, A., Falahati, M., Irannejad, H., & Emami, S. (2012). Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences, 20(1), 46–46.
  • Benet, L. Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the rule of 5 and drugability. Advanced Drug Delivery Reviews, 101, 89–98. https://doi.org/10.1016/j.addr.2016.05.007
  • Bloom, B. R., Atun, R., Cohen, T., Dye, C., Fraser, H., Gomez, G. B., Knight, G., Murray, M., Nardell, E., Rubin, E., Salomon, J., Vassall, A., Volchenkov, G., White, R., Wilson, D., & Yadav, P. (2017). Tuberculosis., in: K.K. Holmes, S. Bertozzi, B.R. Bloom, P. Jha (Eds.), Major infectious diseases. The International Bank for Reconstruction and Development/The World Bank.
  • Bojarska, J., Remko, M., Breza, M., Madura, I. D., Kaczmarek, K., Zabrocki, J., & Wolf, W. M. (2020). A supramolecular approach to structure-based design with a focus on synthons hierarchy in ornithine-derived ligands: review, synthesis, experimental and in silico studies. Molecules, 25(5), 1135. https://doi.org/10.3390/molecules25051135
  • Collins, L., & Franzblau, S. G. (1997). Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrobial Agents and Chemotherapy, 41(5), 1004–1009. https://doi.org/10.1128/AAC.41.5.1004
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dey, R., Nandi, S., Samadder, A., Saxena, A., & Saxena, K. A. (2020). Exploring the potential inhibition of candidate drug molecules for clinical investigation based on their docking or crystallographic analyses against M. tuberculosis enzyme targets. Current Topics in Medicinal Chemistry, 20(29), 2662–2680. https://doi.org/10.2174/1568026620666200903163921
  • Ertl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry, 43(20), 3714–3717. https://doi.org/10.1021/jm000942e
  • Fakih, T. M., & Dewi, M. L. (2020). In silico Identification of characteristics spike glycoprotein of SARS-CoV-2 in the development novel candidates for COVID-19 infectious diseases. Journal of Biomedicine and Translational Research, 6(2), 48–52. https://doi.org/10.14710/jbtr.v6i2.7590
  • Gomes, M. N., Braga, R. C., Grzelak, E. M., Neves, B. J., Muratov, E., Ma, R., Klein, L. L., Cho, S., Oliveira, G. R., Franzblau, S. G., & Andrade, C. H. (2017). QSAR-driven design, synthesis and discovery of potent Chalcones derivatives with antitubercular activity. European Journal of Medicinal Chemistry, 137, 126–138. https://doi.org/10.1016/j.ejmech.2017.05.026
  • Gupta, D., & Jain, D. K. (2015). Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. Journal of Advanced Pharmaceutical Technology & Research, 6(3), 114–117. https://doi.org/10.4103/2231-4040.161507
  • Hadda, B. T., Rastija, V., AlMalki, F., Titi, A., Touzani, R., Mabkhot, N. Y., Khalid, S., Zarrouk, A., & Siddiqui, S. B. (2021). Petra/osiris/molinspiration and molecular docking analyses of 3-hydroxy-Indolin-2-one derivatives as potential antiviral agents. Current Computer-Aided Drug Design, 17(1), 123–133. https://doi.org/10.2174/1573409916666191226110029
  • He, X., Alian, A., & Ortiz de Montellano, P. R. (2007). Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorganic & Medicinal Chemistry, 15(21), 6649–6658. https://doi.org/10.1016/j.bmc.2007.08.013
  • Jung, J.-C., Lee, Y., Min, D., Jung, M., & Oh, S. (2017). Practical synthesis of chalcones derivatives and their biological activities. Molecules, 22(11), 1872. https://doi.org/10.3390/molecules22111872
  • Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., & Morishima, K. (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45(D1), D353–D361. https://doi.org/10.1093/nar/gkw1092
  • Khan, T., Dixit, S., Ahmad, R., Raza, S., Azad, I., Joshi, S., & Khan, A. R. (2017). Molecular docking, PASS analysis, bioactivity score prediction, synthesis, characterization and biological activity evaluation of a functionalized 2-butanone thiosemicarbazone ligand and its com.p. Journal of Chemical Biology, 10(3), 91–104. https://doi.org/10.1007/s12154-017-0167-y
  • Kuldeep, J., Sharma, S. K., Sharma, T., Singh, B. N., & Siddiqi, M. I. (2021). Targeting mycobacterium tuberculosis enoyl-acyl carrier protein reductase using computational tools for identification of potential inhibitor and their biological activity. Molecular Informatics, 40(5), e2000211. https://doi.org/10.1002/minf.202000211
  • Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W., & Chen, F. C. (2002). Chalconess and flavonoids as anti-tuberculosis agents. Bioorganic & Medicinal Chemistry, 10(8), 2795–2802. https://doi.org/10.1016/S0968-0896(02)00094-9
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • López, S. N., Castelli, M. V., Zacchino, S. A., Domínguez, J. N., Lobo, G., Charris-Charris, J., Cortés, J. C., Ribas, J. C., Devia, C., Rodríguez, A. M., & Enriz, R. D. (2001). In vitro antifungal evaluation and structure-activity relationships of a new series of Chalcones derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorganic & Medicinal Chemistry, 9(8), 1999–2013. https://doi.org/10.1016/S0968-0896(01)00116-X
  • Mabkhot, Y. N., Alatibi, F., El-Sayed, N. N. E., Al-Showiman, S., Kheder, N. A., Wadood, A., Rauf, A., Bawazeer, S., & Hadda, T. B. (2016). Antimicrobial activity of some novel armed thiophene derivatives and petra/osiris/molinspiration (POM) analyses. Molecules, 21(2), 222. https://doi.org/10.3390/molecules21020222
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Miller-Petrie, M., Pant, S., & Laxminarayan, R. (2017). Drug-resistant infections. In K. K. Holmes, S. Bertozzi, B.R. Bloom, & P. Jha (Eds.), Major infectious diseases. The International Bank for Reconstruction and Development/The World Bank.
  • Milne, G. W. A. (2010). Software review of ChemBioDraw 12.0. Journal of Chemical Information and Modeling, 50(11), 2053–2053. https://doi.org/10.1021/ci100385n
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nguta, J. M., Appiah-Opong, R., Nyarko, A. K., Yeboah-Manu, D., Addo, P. G., Otchere, I., & Kissi-Twum, A. (2016). Antimycobacterial and cytotoxic activity of selected medicinal plant extracts. Journal of Ethnopharmacology, 182, 10–15. https://doi.org/10.1016/j.jep.2016.02.010
  • Pham The, H., González-Álvarez, I., Bermejo, M., Mangas Sanjuan, V., Centelles, I., Garrigues, T. M., & Cabrera-Pérez, M. (2011). In silico prediction of Caco-2 cell permeability by a classification QSAR approach. Molecular Informatics, 30(4), 376–385. https://doi.org/10.1002/minf.201000118
  • Polkam, N., Ramaswamy, V. R., Rayam, P., Allaka, T. R., Anantaraju, H. S., Dharmarajan, S., Perumal, Y., Gandamalla, D., Yellu, N. R., Balasubramanian, S., & Anireddy, J. S. (2016). Synthesis, molecular properties prediction and anticancer, antioxidant evaluation of new edaravone derivatives. Bioorganic & Medicinal Chemistry Letters, 26(10), 2562–2568. https://doi.org/10.1016/j.bmcl.2016.03.024
  • Preethi, L., Ganamurali, N., Dhanasekaran, D., & Sabarathinam, S. (2021). Therapeutic use of guggulsterone in COVID-19 induced obesity (COVIBESITY) and significant role in immunomodulatory effect. Obesity Medicine, 24, 100346. https://doi.org/10.1016/j.obmed.2021.100346
  • Rammohan, A., Reddy, J. S., Sravya, G., Rao, C. N., & Zyryanov, G. V. (2020). Chalcones synthesis, properties and medicinal applications: A review. Environmental Chemistry Letters, 18(2), 433–458. https://doi.org/10.1007/s10311-019-00959-w
  • Sabarathinam, S., & Vijayakumar, M. T. (2021). A short exploration of selected sensitive CYP3A4 substrates (probe drug). Drug Metabolism Letters, 14(1), 2–4. https://doi.org/10.2174/1872312814666200811110024
  • Salehi, B., Quispe, C., Chamkhi, I., Omari, N. E., Balahbib, A., Sharifi-Rad, J., Bouyahya, A., Akram, M., Iqbal, M., Docea, A. O., Caruntu, C., Leyva-Gómez, G., Dey, A., Martorell, M., Calina, D., López, V., & Les, F. (2020). Pharmacological properties of Chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Frontiers in Pharmacology, 11, 592654. https://doi.org/10.3389/fphar.2020.592654
  • Saxena, K. A., & Singh, A. (2019). Mycobacterial tuberculosis enzyme targets and their inhibitors. Current Topics in Medicinal Chemistry, 19(5), 337–355. https://doi.org/10.2174/1568026619666190219105722
  • Shah, V. R., Bhaliya, J. D., & Patel, G. M. (2021). In silico approach: docking study of oxindole derivatives against the main protease of COVID-19 and its comparison with existing therapeutic agents. Journal of Basic and Clinical Physiology and Pharmacology, 32(3), 197–214. https://doi.org/10.1515/jbcpp-2020-0262
  • Suresh, J., Baek, S. C., Ramakrishnan, S. P., Kim, H., & Mathew, B. (2018). Discovery of potent and reversible MAO-B inhibitors as furanoChalconess. International Journal of Biological Macromolecules, 108, 660–664. https://doi.org/10.1016/j.ijbiomac.2017.11.159
  • Suresh, A. J., Nandini, S., Sangeetha, K., Dhivya, L. S., & Surya, P. R. (2021). Design, synthesis and in vitro biological evaluation of pyridine, thiadazole, benzimidazole and acetyl thiophene analogues as anti tubercular agents targeting enzyme InhA. Current Computer-Aided Drug Design, 17(6), 773–784. https://doi.org/10.2174/1573409916666200724152827
  • Taira, J., Umei, T., Inoue, K., Kitamura, M., Berenger, F., Sacchettini, J. C., Sakamoto, H., & Aoki, S. (2020). Improvement of the novel inhibitor for Mycobacterium enoyl-acyl carrier protein reductase (InhA): a structure-activity relationship study of KES4 assisted by in silico structure-based drug screening. The Journal of Antibiotics, 73(6), 372–381. https://doi.org/10.1038/s41429-020-0293-6
  • Takayama, K., Wang, C., & Besra, G. S. (2005). Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clinical Microbiology Reviews, 18(1), 81–101. https://doi.org/10.1128/CMR.18.1.81-101.2005
  • Tanner, L., Haynes, R. K., & Wiesner, L. (2019). An in vitro ADME and in vivo Pharmacokinetic study of novel TB-active decoquinate derivatives. Frontiers in Pharmacology, 10, 120. https://doi.org/10.3389/fphar.2019.00120
  • Tariq, M., Sirajuddin, M., Ali, S., Khalid, N., Tahir, M. N., Khan, H., & Ansari, T. M. (2016). Pharmacological investigations and petra/osiris/molinspiration (POM) analyses of newly synthesized potentially bioactive organotin(IV) carboxylates. Journal of Photochemistry and Photobiology. B, Biology, 158, 174–183. https://doi.org/10.1016/j.jphotobiol.2016.02.028
  • Wang, Z., Chen, Y., Liang, H., Bender, A., Glen, R. C., & Yan, A. (2011). P-glycoprotein substrate models using support vector machines based on a comprehensive data set. Journal of Chemical Information and Modeling, 51(6), 1447–1456. https://doi.org/10.1021/ci2001583
  • Wang, F., Langley, R., Gulten, G., Dover, L. G., Besra, G. S., Jacobs, W. R., & Sacchettini, J. C. (2007). Sacchettini mechanism of thioamide drug action against tuberculosis and leprosy. The Journal of Experimental Medicine, 204(1), 73–78. https://doi.org/10.1084/jem.20062100
  • Zhu, H., Tang, L., Zhang, C., Wei, B., Yang, P., He, D., Zheng, L., & Zhang, Y. (2019). Synthesis of chalcone derivatives: Inducing apoptosis of HepG2 cells via regulating reactive oxygen species and mitochondrial pathway. Frontiers in Pharmacology, 10, 1341.
  • Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C., & Miao, Z. (2017). Chalcone: A privileged structure in medicinal chemistry. Chemical Reviews, 117(12), 7762–7810. https://doi.org/10.1021/acs.chemrev.7b00020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.