255
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of the inhibitory potential of Valproic acid against histone deacetylase of Leishmania donovani and computational studies of Valproic acid derivatives

, , , & ORCID Icon
Pages 5447-5464 | Received 17 Jan 2022, Accepted 02 Jun 2022, Published online: 15 Jun 2022

References

  • Ahn, W.-Y., Kalinichev, A. G., & Clark, M. M. (2008). Effects of background cations on the fouling of polyethersulfone membranes by natural organic matter: Experimental and molecular modeling study. Journal of Membrane Science, 309(1–2), 128–140. https://doi.org/10.1016/j.memsci.2007.10.023
  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Azam, S. S., & Abbasi, S. W. (2013). Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theoretical Biology and Medical Modelling, 10(1), 1–16. https://doi.org/10.1186/1742-4682-10-63
  • Azam, S. S., Abro, A., Raza, S., & Saroosh, A. (2014). Structure and dynamics studies of sterol 24-C-methyltransferase with mechanism based in activators for the disruption of ergosterol biosynthesis. Molecular Biology Reports, 41(7), 4279–4293.
  • Baell, J. B., & Holloway, G. A. (2010). New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. Journal of Medicinal Chemistry, 53(7), 2719–2740. https://doi.org/10.1021/jm901137j
  • Bhowmik, D., Jagadeesan, R., Rai, P., Nandi, R., Gugan, K., & Kumar, D. (2020). Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. Journal of Biomolecular Structure and Dynamics,39(5), 1838–1852.
  • Borkotoky, S., Meena, C. K., & Murali, A. (2016). Interaction analysis of T7 RNA polymerase with heparin and its low molecular weight derivatives - An in silico approach. Bioinformatics and Biology Insights, 10(BBI), BBI.S40427. https://doi.org/10.4137/BBI.S40427
  • Cerveny, L., Svecova, L., Anzenbacherova, E., Vrzal, R., Staud, F., Dvorak, Z., Ulrichova, J., Anzenbacher, P., & Pavek, P. (2007). Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive and rostane receptor and pregnane X receptor pathways. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 35(7), 1032–1041. https://doi.org/10.1124/dmd.106.014456
  • Chawla, B., & Madhubala, R. (2010). Drug targets in Leishmania. Journal of Parasitic Diseases, 34(1), 1–13.
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science, 2(9), 1511–1519.
  • Cyrański, M. K., Jezierska, A., Klimentowska, P., Panek, J. J., & Sporzyński, A. (2008). Impact of intermolecular hydrogen bond on structural properties of phenylboronic acid: Quantum chemical and X-ray study. Journal of Physical Organic Chemistry, 21(6), 472–482. https://doi.org/10.1002/poc.1389
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. The Proteomics Protocols Handbook, 112, 571–607.
  • Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Göttlicher, M., Minucci, S., Zhu, P., Krämer, O. H., Schimpf, A., Giavara, S., Sleeman, J. P., Lo Coco, F., Nervi, C., Pelicci, P. G., & Heinzel, T. (2001). Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO Journal, 20(24), 6969–6978.
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Gupta, C. L., Khan, M. K. A., Khan, M. F., & Tiwari, A. K. (2013). Homology modeling of LmxMPK4 of Leishmania mexicana and virtual screening of potent inhibitors against it. Interdisciplinary Sciences: Computational Life Sciences, 5(2), 136–144.
  • Guruprasad, K., Reddy, B. V. B., & Pandit, M. W. (1990). Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Engineering, Design and Selection, 4(2), 155–161. https://doi.org/10.1093/protein/4.2.155
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Hsu, K.-C., Chen, Y.-F., Lin, S.-R., & Yang, J.-M. (2011). iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 12(S1), 1–11. https://doi.org/10.1186/1471-2105-12-S1-S33
  • Ibrahim, T. S., Sheha, T. A., Abo-Dya, N. E., AlAwadh, M. A., Alhakamy, N. A., Abdel-Samii, Z. K., Panda, S. S., Abuo-Rahma, G. E.-D. A., & Mohamed, M. F. A. (2020). Design, synthesis and anticancer activity of novel valproic acid conjugates with improved histone deacetylase (HDAC) inhibitory activity. Bioorganic Chemistry, 99, 103797. https://doi.org/10.1016/j.bioorg.2020.103797
  • Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. The Journal of Biochemistry, 88(6), 1895–1898.
  • Koko, W. S., Al Nasr, I. S., Khan, T. A., Schobert, R., & Biersack, B. (2022). An update on natural antileishmanial treatment options from plants, fungi and algae. Chemistry & Biodiversity, 19(1), e202100542. https://doi.org/10.1002/cbdv.202100542
  • Kuldeep, J., Kaur, P., Goyal, N., & Siddiqi, M. I. (2021). Identification of potential anti-leishmanial agents using computational investigation and biological evaluation against trypanothione reductase. Journal of Biomolecular Structure & Dynamics, 39(3), 960–969. https://doi.org/10.1080/07391102.2020.1721330
  • Kumar, A., Pandey, S. C., & Samant, M. (2018). Slow pace of antileishmanial drug development. Parasitology Open, 4, 1–11. https://doi.org/10.1017/pao.2018.1
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. ACS Publications.
  • Leeson, P. (2012). Drug discovery: Chemical beauty contest. Nature, 481(7382), 455–456. https://doi.org/10.1038/481455a
  • Luthra, P. M., Kumar, R., & Prakash, A. (2009). Demethoxycurcumin induces Bcl-2 mediated G2/M arrest and apoptosis in human glioma U87 cells. Biochemical and Biophysical Research Communications, 384(4), 420–425.
  • Mabkhot, Y., Alatibi, F., El-Sayed, N., Al-Showiman, S., Kheder, N., Wadood, A., Rauf, A., Bawazeer, S., & Hadda, T. (2016). Antimicrobial activity of some novel armed thiophene derivatives and petra/osiris/molinspiration (POM) analyses. Molecules, 21(2), 222. https://doi.org/10.3390/molecules21020222
  • Machado, P. d. A., Carneiro, M. P. D., Sousa-Batista, A. d. J., Lopes, F. J. P., Lima, A. P. C. d. A., Chaves, S. P., Sodero, A. C. R., & de Matos Guedes, H. L. (2019). Leishmanicidal therapy targeted to parasite proteases. Life Sciences, 219, 163–181. https://doi.org/10.1016/j.lfs.2019.01.015
  • Maganti, L., Manoharan, P., & Ghoshal, N. (2010). Probing the structure of Leishmania donovani chagasi DHFR-TS: Comparative protein modeling and protein-ligand interaction studies. Journal of Molecular Modeling, 16(9), 1539–1547. https://doi.org/10.1007/s00894-010-0649-0
  • Mbongo, N., Loiseau, P. M., Billion, M. A., & Robert-Gero, M. (1998). Mechanism of amphotericin B resistance inLeishmania donovani promastigotes. Antimicrobial Agents and Chemotherapy, 42(2), 352–357. https://doi.org/10.1128/AAC.42.2.352
  • Mishra, C. B., Kumari, S., Prakash, A., Yadav, R., Tiwari, A. K., Pandey, P., & Tiwari, M. (2018). Discovery of novel Methylsulfonyl phenyl derivatives as potent human Cyclooxygenase-2 inhibitors with effective anticonvulsant action: Design, synthesis, in-silico, in-vitro and in-vivo evaluation. European Journal of Medicinal Chemistry, 151, 520–532. https://doi.org/10.1016/j.ejmech.2018.04.007
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using autodock for ligand-receptor docking. Current Protocols in Bioinformatics, 24(1), 8.14.11–18.14.40. https://doi.org/10.1002/0471250953.bi0814s24
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1–14. https://doi.org/10.1186/1758-2946-3-33
  • Oryan, A., & Akbari, M. (2016). Worldwide risk factors in leishmaniasis. Asian Pacific Journal of Tropical Medicine, 9(10), 925–932. https://doi.org/10.1016/j.apjtm.2016.06.021
  • Pandey, R. K., Kumbhar, B. V., Sundar, S., Kunwar, A., & Prajapati, V. K. (2017). Structure-based virtual screening, molecular docking, ADMET and molecular simulations to develop benzoxaborole analogs as potential inhibitor against Leishmania donovani trypanothione reductase. Journal of Receptor and Signal Transduction Research, 37(1), 60–70.
  • Papaleo, E., Riccardi, L., Villa, C., Fantucci, P., & De Gioia, L. (2006). Flexibility and enzymatic cold-adaptation: A comparative molecular dynamics investigation of the elastase family. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1764(8), 1397–1406. https://doi.org/10.1016/j.bbapap.2006.06.005
  • Pathak, R. K., Baunthiyal, M., Shukla, R., Pandey, D., Taj, G., & Kumar, A. (2017). In silico identification of mimicking molecules as defense inducers triggering jasmonic acid mediated immunity against alternaria blight disease in brassica species. Frontiers in Plant Science, 8, 609. https://doi.org/10.3389/fpls.2017.00609
  • Perrino, E., Cappelletti, G., Tazzari, V., Giavini, E., Del Soldato, P., & Sparatore, A. (2008). New sulfurated derivatives of valproic acid with enhanced histone deacetylase inhibitory activity. Bioorganic & Medicinal Chemistry Letters, 18(6), 1893–1897. https://doi.org/10.1016/j.bmcl.2008.02.007
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera - A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pradeepkiran, J. A., Kumar, K. K., Kumar, Y. N., & Bhaskar, M. (2015). Modeling, molecular dynamics, and docking assessment of transcription factor rho: A potential drug target in Brucella melitensis 16M. Drug Design, Development and Therapy, 9, 1897–1912. https://doi.org/10.2147/DDDT.S77020
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Raj, S., Sasidharan, S., Balaji, S. N., & Saudagar, P. (2020). An overview of biochemically characterized drug targets in metabolic pathways of Leishmania parasite. Parasitology Research, 119(7), 2025–2037.
  • Rajasekaran, R., & Chen, Y.-P. P. (2012). Probing the structure of Leishmania major DHFR TS and structure based virtual screening of peptide library for the identification of anti-leishmanial leads. Journal of Molecular Modeling, 18(9), 4089–4100.
  • Roy, S., Chakraborty, H. J., Kumar, V., Behera, B. K., Rana, R. S., & Babu, G. (2018). In silico structural studies and molecular docking analysis of Delta6-desaturase in HUFA biosynthetic pathway. Animal Biotechnology, 29(3), 161–173. https://doi.org/10.1080/10495398.2017.1332639
  • Sangshetti, J. N., Khan, F. A. K., Kulkarni, A. A., Arote, R., & Patil, R. H. (2015). Antileishmanial drug discovery: Comprehensive review of the last 10 years. RSC Advances, 5(41), 32376–32415. https://doi.org/10.1039/C5RA02669E
  • Sargsyan, K., Grauffel, C. d., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524.
  • Singh, N., Kumar, A., Gupta, P., Chand, K., Samant, M., Maurya, R., & Dube, A. (2008). Evaluation of antileishmanial potential of Tinospora sinensis against experimental visceral leishmaniasis. Parasitology Research, 102(3), 561–565. https://doi.org/10.1007/s00436-007-0822-2
  • Singh, N., Kumar, M., & Singh, R. K. (2012). Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine, 5(6), 485–497.
  • Singh, N. S., & Singh, D. P. (2019). A review on major risk factors and current status of visceral leishmaniasis in north India. American Journal of Entomology, 3(1), 6.
  • Sixto-López, Y., Bello, M., & Correa-Basurto, J. (2020). Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. Journal of Computer-Aided Molecular Design, 34(8), 857-878.
  • Sundar, S., Singh, O. P., & Chakravarty, J. (2018). Visceral leishmaniasis elimination targets in India, strategies for preventing resurgence. Expert Review of anti-Infective Therapy, 16(11), 805–812.
  • Thakur, L., Singh, K. K., Shanker, V., Negi, A., Jain, A., Matlashewski, G., & Jain, M. (2018). Atypical leishmaniasis: A global perspective with emphasis on the Indian subcontinent. PLoS Neglected Tropical Diseases, 12(9), e0006659. https://doi.org/10.1371/journal.pntd.0006659
  • Tian, W., Chen, C., Lei, X., Zhao, J., & Liang, J. (2018). CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Research, 46(W1), W363–W367. https://doi.org/10.1093/nar/gky473
  • Torres-Santos, E. C., Sampaio-Santos, M. I., Buckner, F. S., Yokoyama, K., Gelb, M., Urbina, J. A., & Rossi-Bergmann, B. (2009). Altered sterol profile induced in Leishmania amazonensis by a natural dihydroxymethoxylated chalcone. The Journal of Antimicrobial Chemotherapy, 63(3), 469–472. https://doi.org/10.1093/jac/dkn546
  • Tung, E. W.-Y. (2012). The role of oxidative stress and epigenetic modifications in valproic acid-induced teratogenesis in the mouse.
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Vargas, J. A. R., Lopez, A. G., Piñol, M. C., & Froeyen, M. (2018). Molecular docking study on the interaction between 2-substituted-4, 5-difuryl Imidazoles with different Protein Target for antileishmanial activity. Journal of Applied Pharmaceutical Science, 8(03), 014–022.
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410.
  • Yang, J., Roy, A., & Zhang, Y. (2013). Protein-ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics, 29(20), 2588–2595. https://doi.org/10.1093/bioinformatics/btt447

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.